Back to Search Start Over

Prevalence of Beta-Lactam and Quinolone/Fluoroquinolone Resistance in Enterobacteriaceae From Dogs in France and Spain—Characterization of ESBL/pAmpC Isolates, Genes, and Conjugative Plasmids

Authors :
Alain Bousquet-Mélou
Nathalie Arpaillange
Sakina Sayah-Jeanne
Diego Lopez-Pulin
Gabriel Moyano
Nathalie Saint-Lu
Mouni Abdelli
Bruno Gonzalez-Zorn
Antoine Andremont
Véronique Dupouy
Delphine Bibbal
Jean de Gunzburg
Marie-Christine Cadiergues
Innovations Thérapeutiques et Résistances (InTheRes)
Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire de Toulouse (ENVT)
Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées
Da Volterra [Paris, France]
Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)
Université Fédérale Toulouse Midi-Pyrénées
Centro Veterinario Loranca
Partenaires INRAE
Dupouy-Guiraute, Véronique
Source :
Frontiers in Veterinary Science, Frontiers in Veterinary Science, Frontiers Media, 2019, 6, ⟨10.3389/fvets.2019.00279⟩, Frontiers in Veterinary Science, Vol 6 (2019), Frontiers in veterinary science (6), . (2019)
Publication Year :
2019
Publisher :
Frontiers Media SA, 2019.

Abstract

International audience; Quantitative data on fecal shedding of antimicrobial-resistant bacteria are crucial to assess the risk of ansmission from dogs to humans. Our first objective was to investigate the prevalence of quinolone/fluoroquinolone-resistant and beta-lactam-resistant Enterobacteriaceae in dogs in France and Spain. Due to the particular concern about possible transmission of extended-spectrum cephalosporin (ESC)-resistant isolates from dogs to their owners, we characterized the ESBL/pAmpC producers collected from dogs. Rectal swabs from 188 dogs, without signs of diarrhea and that had not received antimicrobials for 4 weeks before the study, were quantified for total and resistant Enterobacteriaceae on selective media alone or containing relevant antibiotic concentrations. Information that might explain antibiotic resistance was collected for each dog. Extended-spectrum cephalosporin-resistant isolates were subjected to bacterial species identification (API20E), genetic lineage characterization (MLST), ESBL/pAmpC genes identification (sequencing), and plasmid characterization (pMLST). Regarding beta-lactam resistance, amoxicillin- (AMX) and cefotaxime- (CTX) resistant Enterobacteriaceae were detected in 70 and 18% of the dogs, respectively, whereas for quinolone/fluoroquinolone-resistance, Nalidixic acid- (NAL) and ciprofloxacin- (CIP) resistant Enterobacteriaceae were detected in 36 and 18% of the dogs, respectively. Medical rather than preventive consultation was a risk marker for the presence of NAL and CIP resistance. CTX resistance was mainly due to a combination of specific ESBL/pAmpC genes and particular conjugative plasmids already identified in human patients: bla(CTX-M-1)/IncI1/ST3 (n = 4), bla(CMY-2)/IncI1/ST12 (n = 2), and bla(CTX-M-15)/IncI1/ST31 (n = 1). bla(SHV-12) ( n = 3) was detected in various plasmid lineages (InI1/ST3, IncI1/ST26, and IncFII). ESBL/pAmpC plasmids were located in different genetic lineages of E coil, with the exception of two strains in France (ST6998) and two in Spain (ST602). Our study highlights dogs as a potential source of Q/FQ-resistant and ESBL/pAmpC-producing bacteria that might further disseminate to humans, and notably a serious risk of future acquisition of CTX-M-1 and CMY-2 plasmids by the owners of dogs.

Details

ISSN :
22971769
Volume :
6
Database :
OpenAIRE
Journal :
Frontiers in Veterinary Science
Accession number :
edsair.doi.dedup.....a6030660e0872d1cf32ff7bac39e5214
Full Text :
https://doi.org/10.3389/fvets.2019.00279