Back to Search Start Over

rMSIcleanup: An open-source tool for matrix-related peak annotation in mass spectrometry imaging and its application to silver-assisted laser desorption/ionization

Authors :
Baquer, Gerard
Sementé, Lluc
García-Altares, María
Lee, Young Jin
Chaurand, Pierre
Correig, Xavier
Ràfols, Pere
Source :
Journal of Cheminformatics, Vol 12, Iss 1, Pp 1-13 (2020), Journal of Cheminformatics
Publication Year :
2019
Publisher :
Cold Spring Harbor Laboratory, 2019.

Abstract

Mass spectrometry imaging (MSI) has become a mature, widespread analytical technique to perform non-targeted spatial metabolomics. However, the compounds used to promote desorption and ionization of the analyte during acquisition cause spectral interferences in the low mass range that hinder downstream data processing in metabolomics applications. Thus, it is advisable to annotate and remove matrix-related peaks to reduce the number of redundant and non-biologically-relevant variables in the dataset. We have developed rMSIcleanup, an open-source R package to annotate and remove matrix-related signals based on its chemical formula and the spatial distribution of its ions. To validate the annotation method, rMSIcleanup was challenged with several images acquired using silver-assisted laser desorption ionization MSI (AgLDI MSI). The algorithm was able to correctly classify m/z signals related to silver clusters. Visual exploration of the data using Principal Component Analysis (PCA) demonstrated that annotation and removal of matrix-related signals improved spectral data post-processing. The results highlight the need for including matrix-related peak annotation tools such as rMSIcleanup in MSI workflows.Resources availabilityThe R package presented in this publication is freely available under the terms of the GNU General Public License v3.0 at https://github.com/gbaquer/rMSIcleanup. The datasets used in the experiments can be accessed upon request to the corresponding author.

Details

Language :
English
Database :
OpenAIRE
Journal :
Journal of Cheminformatics, Vol 12, Iss 1, Pp 1-13 (2020), Journal of Cheminformatics
Accession number :
edsair.doi.dedup.....a595319e5b9bcc7924f7db48e4f26360
Full Text :
https://doi.org/10.1101/2019.12.20.884957