Back to Search Start Over

Hall mobility in multicrystalline silicon

Authors :
Wolfram Kwapil
J. Geilker
Martin C. Schubert
W. Warta
Florian Schindler
Publica
Source :
Journal of Applied Physics. 110:043722
Publication Year :
2011
Publisher :
AIP Publishing, 2011.

Abstract

Knowledge of the carrier mobility in silicon is of utmost importance for photovoltaic applications, as it directly influences the diffusion length and thereby the cell efficiency. Moreover, its value is needed for a correct quantitative evaluation of a variety of lifetime measurements. However, models that describe the carrier mobility in silicon are based on theoretical calculations or fits to experimental data in monocrystalline silicon. Multicrystalline (mc) silicon features crystal defects such as dislocations and grain boundaries, with the latter possibly leading to potential barriers through the trapping of charge carriers and thereby influencing the mobility, as shown, for example, by Maruska [Appl. Phys. Lett. 36, 381 (1980)]. To quantify the mobilities in multicrystalline silicon, we performed Hall measurements in p-type mc-Si samples of various resistivities and different crystal structures and compared the data to majority carrier Hall mobilities in p-type mo nocrystalline floatzone (FZ) silicon. For lack of a model that provides reliable values of the Hall mobility in silicon, an empirical fit similar to existing models for conductivity mobilities is proposed based on Hall measurements of monocrystalline p-type FZ silicon. By comparing the measured Hall mobilities obtained from mc silicon with the corresponding Hall mobilities in monocrystalline silicon of the same resistivity, we found that the mobility reduction due to the presence of crystal defects in mc-Si ranges between 0 and 5 only. Mobility decreases of up to 30 as reported by Peter [Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1-5 September 2008], or even of a factor of 2 to 3 as detected by Palais [Mater. Sci. Eng. B 102, 184 (2003)], in multicrystalline silicon were not observed.

Details

ISSN :
10897550 and 00218979
Volume :
110
Database :
OpenAIRE
Journal :
Journal of Applied Physics
Accession number :
edsair.doi.dedup.....a5886807369dcfb78a5fd4b6554b78e3
Full Text :
https://doi.org/10.1063/1.3622620