Back to Search Start Over

The Non-Unicity of the Film Thickness in the Hydrodynamic Lubrication: Novel Approach Generating Equivalent Micro-Grooves and Roughness

Authors :
M. Hajjam
M. El Gadari
Source :
International Journal of Applied Mechanics and Engineering, Vol 26, Iss 3, Pp 44-61 (2021)
Publication Year :
2021
Publisher :
Walter de Gruyter GmbH, 2021.

Abstract

Since the 1960s, all studies have assumed that a film thickness “h” provides a unique pressure field “p” by resolving the Reynolds equation. However, it is relevant to investigate the film thickness unicity under a given hydrodynamic pressure within the inverse theory. This paper presents a new approach to deduce from an initial film thickness a widespread number of thicknesses providing the same hydrodynamic pressure under a specific condition of gradient pressure. For this purpose, three steps were presented: 1) computing the hydrodynamic pressure from an initial film thickness by resolving the Reynolds equation with Gümbel’s cavitation model, 2) using a new algorithm to generate a second film thickness, 3) comparing and validating the hydrodynamic pressure produced by both thicknesses with the modified Reynolds equation. Throughout three surface finishes: the macro-shaped, micro-textured, and rough surfaces, it has been demonstrated that under a specific hydrodynamic pressure gradient, several film thicknesses could generate the same pressure field with a slight difference by considering cavitation. Besides, this paper confirms also that with different ratios of the averaged film thickness to the root mean square (RMS) similar hydrodynamic pressure could be generated, thereby the deficiency of this ratio to define the lubrication regime as commonly known from Patir and Cheng theory.

Details

ISSN :
23539003
Volume :
26
Database :
OpenAIRE
Journal :
International Journal of Applied Mechanics and Engineering
Accession number :
edsair.doi.dedup.....a557bd2b84e9798c374f516fc05b0100