Back to Search Start Over

Non-responder phenotype reveals apparent microbiome-wide antibiotic tolerance in the murine gut

Authors :
Susan E. Erdman
Sushmita Patwardhan
Sean M. Gibbons
Anna C. H. Hoge
Sean M. Kearney
Robert L. Moritz
Ulrike Kusebauch
Christian Diener
Source :
Communications Biology, Communications Biology, Vol 4, Iss 1, Pp 1-11 (2021)
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Broad spectrum antibiotics cause both transient and lasting damage to the ecology of the gut microbiome. Antibiotic-induced loss of gut bacterial diversity has been linked to susceptibility to enteric infections. Prior work on subtherapeutic antibiotic treatment in humans and non-human animals has suggested that entire gut communities may exhibit tolerance phenotypes. In this study, we validate the existence of these community tolerance phenotypes in the murine gut and explore how antibiotic treatment duration or a diet enriched in antimicrobial phytochemicals might influence the frequency of this phenotype. Almost a third of mice exhibited whole-community tolerance to a high dose of the β-lactam antibiotic cefoperazone, independent of antibiotic treatment duration or dietary phytochemical amendment. We observed few compositional differences between non-responder microbiota during antibiotic treatment and the untreated control microbiota. However, gene expression was vastly different between non-responder microbiota and controls during treatment, with non-responder communities showing an upregulation of antimicrobial tolerance genes, like efflux transporters, and a down-regulation of central metabolism. Future work should focus on what specific host- or microbiome-associated factors are responsible for tipping communities between responder and non-responder phenotypes so that we might learn to harness this phenomenon to protect our microbiota from routine antibiotic treatment.<br />Diener, Hoge et al. show that a third of mice exhibit tolerance to a high dose of the β-lactam antibiotic cefoperazone, independent of antibiotic treatment duration or dietary phytochemical amendment. They find that non-responder microbiota upregulates antimicrobial tolerance genes and downregulates central metabolism without altering community composition or diversity, providing insights into the mechanisms of community-wide antibiotic tolerance.

Details

ISSN :
23993642
Volume :
4
Database :
OpenAIRE
Journal :
Communications Biology
Accession number :
edsair.doi.dedup.....a52a9587db754138a6577348c047c80f
Full Text :
https://doi.org/10.1038/s42003-021-01841-8