Back to Search Start Over

Simultaneous Prediction of Soil Properties Using Multi_CNN Model

Authors :
Ruixue Li
Bo Yin
Yanping Cong
Zehua Du
Source :
Sensors, Volume 20, Issue 21, Sensors, Vol 20, Iss 6271, p 6271 (2020), Sensors (Basel, Switzerland)
Publication Year :
2020
Publisher :
Multidisciplinary Digital Publishing Institute, 2020.

Abstract

Soil nutrient prediction based on near-infrared spectroscopy has become the main research direction for rapid acquisition of soil information. The development of deep learning has greatly improved the prediction accuracy of traditional modeling methods. In view of the low efficiency and low accuracy of current soil prediction models, this paper proposes a soil multi-attribute intelligent prediction method based on convolutional neural networks, by constructing a dual-stream convolutional neural network model Multi_CNN that combines one-dimensional convolution and two-dimensional convolution, the intelligent prediction of soil multi-attribute is realized. The model extracts the characteristics of soil attributes from spectral sequences and spectrograms respectively, and multiple attributes can be predicted simultaneously by feature fusion. The model is based on two different-scale soil near-infrared spectroscopy data sets for multi-attribute prediction. The experimental results show that the RP2 of the three attributes of Total Carbon, Total Nitrogen, and Alkaline Nitrogen on the small dataset are 0.94, 0.95, 0.87, respectively, and the RP2 of the attributes of Organic Carbon, Nitrogen, and Clay on the LUCAS dataset are, respectively, 0.95, 0.91, 0.83, And compared with traditional regression models and new prediction methods commonly used in soil nutrient prediction, the multi-task model proposed in this paper is more accurate.

Details

Language :
English
ISSN :
14248220
Database :
OpenAIRE
Journal :
Sensors
Accession number :
edsair.doi.dedup.....a52a71b0084ad2c11dfcb1550d4b633a
Full Text :
https://doi.org/10.3390/s20216271