Back to Search Start Over

Histopathology Feature Mining and Association with Hyperspectral Imaging for the Detection of Squamous Neoplasia

Authors :
Dongsheng Wang
Susan Muller
Baowei Fei
Georgia Z. Chen
Xu Wang
James V. Little
Amy Y. Chen
Guolan Lu
Xulei Qin
Source :
Scientific Reports, Scientific Reports, Vol 9, Iss 1, Pp 1-13 (2019)
Publication Year :
2019
Publisher :
Nature Publishing Group UK, 2019.

Abstract

Hyperspectral imaging (HSI) is a noninvasive optical modality that holds promise for early detection of tongue lesions. Spectral signatures generated by HSI contain important diagnostic information that can be used to predict the disease status of the examined biological tissue. However, the underlying pathophysiology for the spectral difference between normal and neoplastic tissue is not well understood. Here, we propose to leverage digital pathology and predictive modeling to select the most discriminative features from digitized histological images to differentiate tongue neoplasia from normal tissue, and then correlate these discriminative pathological features with corresponding spectral signatures of the neoplasia. We demonstrated the association between the histological features quantifying the architectural features of neoplasia on a microscopic scale, with the spectral signature of the corresponding tissue measured by HSI on a macroscopic level. This study may provide insight into the pathophysiology underlying the hyperspectral dataset.

Details

Language :
English
ISSN :
20452322
Volume :
9
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....a5013b84b091b9edb54da8c75f47b874