Back to Search Start Over

Evolution of jaw disparity in fishes

Authors :
Philip C. J. Donoghue
Mark N. Puttick
Emily J. Rayfield
Thomas L. Stubbs
Jennifer J. Hill
Source :
Hill, J J, Puttick, M, Stubbs, T, Rayfield, E & Donoghue, P 2018, ' Evolution of jaw disparity in fishes ', Palaeontology . https://doi.org/10.1111/pala.12371
Publication Year :
2018
Publisher :
Wiley, 2018.

Abstract

The morphology of the vertebrate lower jaw has been used to infer feeding ecology. Transformations in mandibular shape and structure likely to have facilitated the emergence of different feeding behaviours in vertebrate evolution. Here we present elliptical Fourier shape and principal component analyses, characterizing and comparing the disparity of jaw shape in early gnathostomes and their modern primitively aquatic counterparts. 83% of shape variation is summarized on the first three principal component axes and all component clades of early gnathostomes exhibit overlapping morphological variation. Non-tetrapodomorph Palaeozoic sarcopterygians are more disparate than their extant counterparts whereas extant chondrichthyans are more disparate than their Palaeozoic counterparts. More generally, extant jawed fishes are more disparate than their Palaeozoic relatives largely because of the extensive shape variation exhibited by mandibles of extant actinopterygians. Only some areas of shape space vacated by Palaeozoic gnathostomes have been convergently refilled by living taxa. Characterization of theoretical jaw morphologies demonstrates that less than half of all possible shapes are realised by the jawed fishes that comprise our empirical dataset; many of these morphologies are realised by unrepresented terrestrial tetrapods, implying environmental constraint. Our results are incompatible with the early burst model of clade evolution and contradict the hypothesis that maximum disparity is reached early in the evolutionary history of jawed fishes.

Details

ISSN :
00310239
Volume :
61
Database :
OpenAIRE
Journal :
Palaeontology
Accession number :
edsair.doi.dedup.....a4f308354f0c30060d978aac1052a1b8
Full Text :
https://doi.org/10.1111/pala.12371