Back to Search Start Over

Solving robust bin-packing problems with a branch-and-price approach

Authors :
André Rossi
Evgeny Gurevsky
Alexandre Dolgui
Xavier Schepler
Laboratoire d'Etudes et de Recherche en Informatique d'Angers (LERIA)
Université d'Angers (UA)
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE)
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Systèmes Logistiques et de Production (SLP )
Laboratoire des Sciences du Numérique de Nantes (LS2N)
Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Département Automatique, Productique et Informatique (IMT Atlantique - DAPI)
IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Source :
European Journal of Operational Research, European Journal of Operational Research, 2022, 297 (3), pp.831-843. ⟨10.1016/j.ejor.2021.05.041⟩
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

One-dimensional bin-packing is a well-known combinatorial optimization problem which is strongly NP-hard. It consists of allocating a given set of items of different sizes into bins of the same capacity to minimize the number of bins used. The capacity of each bin cannot be exceeded. This paper deals with some variants of this problem to take into account the cases when there are items with uncertain sizes. The goal is to obtain robust solutions taking into account possible variations of item sizes around their nominal values. First, two robust approaches are considered which are based on a stability radius calculation, to ensure that the stability radius, measured either with the Manhattan or Chebyshev norm, is not below a given threshold. Then, a complementary robust approach is applied which is based on a relative resiliency calculation. To solve to optimality these robust variants of the bin-packing problem, a compact 0-1 linear programming formulation, which is also valid for the standard bin-packing problem, is introduced. Then, a Dantzig-Wolfe decomposition is suggested in order to provide a set-cover reformulation with a stronger linear relaxation, but an exponential number of columns. Finally, to obtain integer optimal solutions, a branch-and-price algorithm is developed, whose linear relaxation of the set-cover formulation is solved by a dynamic column generation. Numerical experiments are conducted on adapted benchmark sets from the literature. The performance of the branch-and-price algorithm allows us to investigate what protection against uncertainty is offered by each approach, and at which cost of robustness.

Details

ISSN :
03772217
Volume :
297
Database :
OpenAIRE
Journal :
European Journal of Operational Research
Accession number :
edsair.doi.dedup.....a4a9b383ba428342e50414de1ae09ac5