Back to Search
Start Over
Harnessing repeated measurements of predictor variables for clinical risk prediction: a review of existing methods
- Source :
- Diagnostic and Prognostic Research, Vol 4, Iss 1, Pp 1-16 (2020), Diagnostic and Prognostic Research
- Publication Year :
- 2020
- Publisher :
- BMC, 2020.
-
Abstract
- Background Clinical prediction models (CPMs) predict the risk of health outcomes for individual patients. The majority of existing CPMs only harness cross-sectional patient information. Incorporating repeated measurements, such as those stored in electronic health records, into CPMs may provide an opportunity to enhance their performance. However, the number and complexity of methodological approaches available could make it difficult for researchers to explore this opportunity. Our objective was to review the literature and summarise existing approaches for harnessing repeated measurements of predictor variables in CPMs, primarily to make this field more accessible for applied researchers. Methods MEDLINE, Embase and Web of Science were searched for articles reporting the development of a multivariable CPM for individual-level prediction of future binary or time-to-event outcomes and modelling repeated measurements of at least one predictor. Information was extracted on the following: the methodology used, its specific aim, reported advantages and limitations, and software available to apply the method. Results The search revealed 217 relevant articles. Seven methodological frameworks were identified: time-dependent covariate modelling, generalised estimating equations, landmark analysis, two-stage modelling, joint-modelling, trajectory classification and machine learning. Each of these frameworks satisfies at least one of three aims: to better represent the predictor-outcome relationship over time, to infer a covariate value at a pre-specified time and to account for the effect of covariate change. Conclusions The applicability of identified methods depends on the motivation for including longitudinal information and the method’s compatibility with the clinical context and available patient data, for both model development and risk estimation in practice.
- Subjects :
- Computer science
MEDLINE
Context (language use)
Estimating equations
Review
Machine learning
computer.software_genre
Prediction models
01 natural sciences
Field (computer science)
Time-dependent covariates
010104 statistics & probability
03 medical and health sciences
Joint models
0302 clinical medicine
Repeated observations
Covariate
Electronic health records
030212 general & internal medicine
0101 mathematics
Estimation
lcsh:R5-920
business.industry
Longitudinal data
Multivariable calculus
Survival analysis
Clinical risk prediction
Personalised medicine
Artificial intelligence
Dynamic prediction
business
lcsh:Medicine (General)
computer
Predictive modelling
Subjects
Details
- Language :
- English
- ISSN :
- 23977523
- Volume :
- 4
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Diagnostic and Prognostic Research
- Accession number :
- edsair.doi.dedup.....a464f095b85bbb5b70eaeb532082aa43
- Full Text :
- https://doi.org/10.1186/s41512-020-00078-z