Back to Search
Start Over
Noetherian properties in composite generalized power series rings
- Source :
- Open Mathematics, Vol 18, Iss 1, Pp 1540-1551 (2020)
- Publication Year :
- 2020
- Publisher :
- De Gruyter, 2020.
-
Abstract
- Let(Γ,≤)({\mathrm{\Gamma}},\le )be a strictly ordered monoid, and letΓ⁎=Γ\{0}{{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\}. LetD⊆ED\subseteq Ebe an extension of commutative rings with identity, and letIbe a nonzero proper ideal ofD. SetD+〚EΓ⁎,≤〛≔f∈〚EΓ,≤〛|f(0)∈DandD+〚IΓ⁎,≤〛≔f∈〚DΓ,≤〛|f(α)∈I,forallα∈Γ⁎.\begin{array}{l}D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {E}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(0)\in D\right\}\hspace{.5em}\text{and}\\ \hspace{0.2em}D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {D}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(\alpha )\in I,\hspace{.5em}\text{for}\hspace{.25em}\text{all}\hspace{.5em}\alpha \in {{\mathrm{\Gamma}}}^{\ast }\right\}.\end{array}In this paper, we give necessary conditions for the ringsD+〚EΓ⁎,≤〛D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt]to be Noetherian when(Γ,≤)({\mathrm{\Gamma}},\le )is positively ordered, and sufficient conditions for the ringsD+〚EΓ⁎,≤〛D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt]to be Noetherian when(Γ,≤)({\mathrm{\Gamma}},\le )is positively totally ordered. Moreover, we give a necessary and sufficient condition for the ringD+〚IΓ⁎,≤〛D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt]to be Noetherian when(Γ,≤)({\mathrm{\Gamma}},\le )is positively totally ordered. As corollaries, we give equivalent conditions for the ringsD+(X1,…,Xn)E[X1,…,Xn]D+({X}_{1},\ldots ,{X}_{n})E{[}{X}_{1},\ldots ,{X}_{n}]andD+(X1,…,Xn)I[X1,…,Xn]D+({X}_{1},\ldots ,{X}_{n})I{[}{X}_{1},\ldots ,{X}_{n}]to be Noetherian.
- Subjects :
- Noetherian
Power series
13b35
Pure mathematics
13a02
generalized power series ring
13a15
General Mathematics
noetherian ring
010102 general mathematics
Composite number
13e05
01 natural sciences
d+〚eγ⁎,≤〛,d+〚iγ⁎,≤〛
0103 physical sciences
QA1-939
010307 mathematical physics
0101 mathematics
Geometry and topology
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 23915455
- Volume :
- 18
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Open Mathematics
- Accession number :
- edsair.doi.dedup.....a45d0b651785c85fad29f4b303effbd9