Back to Search Start Over

Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9

Authors :
Brian J. DeBosch
O Kluth
Kelle H. Moley
Hideji Fujiwara
Annette Schürmann
Source :
Nature Communications. 5
Publication Year :
2014
Publisher :
Springer Science and Business Media LLC, 2014.

Abstract

Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricaemia contributes to the development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. In addition, how uric acid is cleared from the circulation is incompletely understood. Here we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricaemia, hyperuricosuria, spontaneous hypertension, dyslipidaemia and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolaemia. These data provide evidence that hyperuricaemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome.

Details

ISSN :
20411723
Volume :
5
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....a452a289e78c71e1ad29c8a35bddff78
Full Text :
https://doi.org/10.1038/ncomms5642