Back to Search Start Over

Anomaly Detection on Textured Images with Convolutional Neural Network for Quality Control of Micrometric Woven Meshes

Authors :
Pierre-Fr閐閞ic Villard
Maureen Boudart
Ioana Ilea
Fabien Pierre
Recalage visuel avec des modèles physiquement réalistes (TANGRAM)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
IUT de Saint-Dié
Université de Lorraine (UL)
Technical University of Cluj-Napoca
Source :
Fluid Dynamic and Material Process, Fluid Dynamic and Material Process, 2022, 18 (6), pp.1639-1648. ⟨10.32604/fdmp.2022.021726⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; Industrial woven meshes are composed of metal material and are often used in construction, industrial and residential industries. The context of this work is defect detection in industrial fabrics in the quality control process. It is often performed with a manual method and could be quite tedious and time-consuming. We propose here a method to automatically detect defects in micrometric steel meshes using a Convolutional Neural Network. The database used for this work comes from the real problem of anomaly detection on micrometric woven meshes. This detection is performed through supervised classification with Convolutional Neural Network using a VGG19 architecture. To this aim, we propose a pipeline and a strategy to tackle the small amount of data. It includes i) augmenting the database with translation, rotation and symmetry, ii) using pre-trained weights and iii) checking the learning curve behaviour through cross-validation. The proposed method has been evaluated by automatically detecting if metallic fabrics has defects. Obtain results show that, despite the small size of our databases, detection accuracy of 96% was reached.

Details

Language :
English
ISSN :
1555256X and 15552578
Database :
OpenAIRE
Journal :
Fluid Dynamic and Material Process, Fluid Dynamic and Material Process, 2022, 18 (6), pp.1639-1648. ⟨10.32604/fdmp.2022.021726⟩
Accession number :
edsair.doi.dedup.....a443ba41269eab3cdf8b1851feb8a6ae
Full Text :
https://doi.org/10.32604/fdmp.2022.021726⟩