Back to Search Start Over

How does aquatic macrophyte Salvinia auriculata respond to nanoceria upon an increased CO2 source? A Fourier transform-infrared photoacoustic spectroscopy and chlorophyll a fluorescence study

Authors :
Daniela E. Graciano
Luis Humberto da Cunha Andrade
Sandro Marcio Lima
William F. Falco
Montcharles da Silva Pontes
Anderson R.L. Caires
Etenaldo Felipe Santiago
Renato Grillo
Universidade Estadual de Mato Grosso do Sul (UEMS)
Universidade Estadual Paulista (Unesp)
Universidade Federal da Grande Dourados
Universidade Federal de Mato Grosso do Sul (UFMS)
Source :
Scopus, Repositório Institucional da UNESP, Universidade Estadual Paulista (UNESP), instacron:UNESP
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

Made available in DSpace on 2019-10-06T16:31:02Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-09-30 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul With the continued increase of technological uses of cerium oxide nanoparticles (CeO2 NPs or nanoceria)and their unregulated disposal, the accumulation of nanoceria in the environment is inevitable. Concomitantly, atmospheric carbon dioxide (CO2)levels continue to rise, increasing the concentrations of bicarbonate ions in aquatic ecosystems. This study investigates the influence of CeO2 NPs (from 0 to 100 μgL−1)in the presence and absence of an elevated bicarbonate (HCO3 −)ion concentration (1 mM), on vibrational biochemical parameters and photosystem II (PSII)activity in leaf discs of Salvinia auriculata. Fourier transform-infrared photoacoustic spectroscopy (FTIR-PAS)was capable of diagnostic use to understand biochemical and metabolic changes in leaves submitted to the CeO2 NPs and also detected interactive responses between CeO2 NPs and HCO3 − exposure at the tissue level. The results showed that the higher CeO2 NPs levels in the presence of HCO3 − increased the non-photochemical quenching (NPQ)and coefficient of photochemical quenching in dark (qPd)compared to the absence of HCO3. Moreover, the presence of HCO3 − significantly decreased the NPQ at all levels of CeO2 NPs demonstrating that HCO3 − exposure may change the non-radiative process involved in the operation of the photosynthetic apparatus. Overall, the results of this study are useful for providing baseline information on the interactive effects of CeO2 NPs and elevated HCO3 − ion concentration on photosynthetic systems. Grupo de Estudos em Recursos Vegetais Universidade Estadual de Mato Grosso do Sul, CP 350 Programa de Pós-Graduação em Recursos Naturais Centro de Estudos em Recursos Naturais Universidade Estadual de Mato Grosso do Sul, CP 350 Laboratório de Nanoquímica Ambiental Departamento de Física e Química Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Avenida Brasil, 56, Centro, Ilha Solteira Grupo de Óptica Aplicada Universidade Federal da Grande Dourados, CP 533 Grupo de Espectroscopia Óptica e Fototérmica Universidade Estadual de Mato Grosso do Sul, CP 350 Grupo de Óptica e Fotônica Instituto de Física Universidade Federal de Mato Grosso do Sul, CP 549 Laboratório de Nanoquímica Ambiental Departamento de Física e Química Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Avenida Brasil, 56, Centro, Ilha Solteira CNPq: 465360/2014-9

Details

ISSN :
01476513
Volume :
180
Database :
OpenAIRE
Journal :
Ecotoxicology and Environmental Safety
Accession number :
edsair.doi.dedup.....a431ad9852e0068e37f66fe6c5be71bf
Full Text :
https://doi.org/10.1016/j.ecoenv.2019.05.041