Back to Search Start Over

Bridging the Hybrid High-Order and Virtual Element methods

Authors :
Simon Lemaire
Reliable numerical approximations of dissipative systems (RAPSODI )
Laboratoire Paul Painlevé (LPP)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratoire Paul Painlevé - UMR 8524 (LPP)
Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Inria Lille - Nord Europe
Source :
IMA Journal of Numerical Analysis, IMA Journal of Numerical Analysis, 2021, 41 (1), pp.549-593. ⟨10.1093/imanum/drz056⟩, IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2021, 41 (1), pp.549-593. ⟨10.1093/imanum/drz056⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

We present a unifying viewpoint on hybrid high-order and virtual element methods on general polytopal meshes in dimension $2$ or $3$, in terms of both formulation and analysis. We focus on a model Poisson problem. To build our bridge (i) we transcribe the (conforming) virtual element method into the hybrid high-order framework and (ii) we prove $H^m$ approximation properties for the local polynomial projector in terms of which the local virtual element discrete bilinear form is defined. This allows us to perform a unified analysis of virtual element/hybrid high-order methods, that differs from standard virtual element analyses by the fact that the approximation properties of the underlying virtual space are not explicitly used. As a complement to our unified analysis we also study interpolation in local virtual spaces, shedding light on the differences between the conforming and nonconforming cases.

Details

Language :
English
ISSN :
02724979 and 14643642
Database :
OpenAIRE
Journal :
IMA Journal of Numerical Analysis, IMA Journal of Numerical Analysis, 2021, 41 (1), pp.549-593. ⟨10.1093/imanum/drz056⟩, IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2021, 41 (1), pp.549-593. ⟨10.1093/imanum/drz056⟩
Accession number :
edsair.doi.dedup.....a4107c2d9c93e0ce88d8a2d1d53278a9
Full Text :
https://doi.org/10.1093/imanum/drz056⟩