Back to Search
Start Over
Minimizing travelling waves for the Gross-Pitaevskii equation on $\mathbb{R} \times \mathbb{T}$
- Publication Year :
- 2022
- Publisher :
- HAL CCSD, 2022.
-
Abstract
- We study the Gross-Pitaevskii equation in dimension two with periodic conditions in one direction, or equivalently on the product space $\mathbb{R} \times \mathbb{T}_L$ where $L > 0$ and $\mathbb{T}_L = \mathbb{R} / L \mathbb{Z}.$ We focus on the variational problem consisting in minimizing the Ginzburg-Landau energy under a fixed momentum constraint. We prove that there exists a threshold value for $L$ below which minimizers are the one-dimensional dark solitons, and above which no minimizer can be one-dimensional.
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....a3f1bb76b754d5f78972675309b74230