Back to Search Start Over

Heparin-binding protein is important for vascular leak in sepsis

Authors :
Peter Bentzer
Keith R. Walley
Jane Fisher
John H. Boyd
Matthias Mörgelin
James A. Russell
HyeJin Julia Kong
Adam Linder
Source :
Intensive Care Medicine Experimental
Publication Year :
2016
Publisher :
Springer International Publishing, 2016.

Abstract

Background Elevated plasma levels of heparin-binding protein (HBP) are associated with risk of organ dysfunction and mortality in sepsis, but little is known about causality and mechanisms of action of HBP. The objective of the present study was to test the hypothesis that HBP is a key mediator of the increased endothelial permeability observed in sepsis and to test potential treatments that inhibit HBP-induced increases in permeability. Methods Association between HBP at admission with clinical signs of increased permeability was investigated in 341 patients with septic shock. Mechanisms of action and potential treatment strategies were investigated in cultured human endothelial cells and in mice. Results Following adjustment for comorbidities and Acute Physiology and Chronic Health Evaluation (APACHE) II, plasma HBP concentrations were weakly associated with fluid overload during the first 4 days of septic shock and the degree of hypoxemia (PaO2/FiO2) as measures of increased systemic and lung permeability, respectively. In mice, intravenous injection of recombinant human HBP induced a lung injury similar to that observed after lipopolysaccharide injection. HBP increased permeability of vascular endothelial cell monolayers in vitro, and enzymatic removal of luminal cell surface glycosaminoglycans (GAGs) using heparinase III and chondroitinase ABC abolished this effect. Similarly, unfractionated heparins and low molecular weight heparins counteracted permeability increased by HBP in vitro. Intracellular, selective inhibition of protein kinase C (PKC) and Rho-kinase pathways reversed HBP-mediated permeability effects. Conclusions HBP is a potential mediator of sepsis-induced acute lung injury through enhanced endothelial permeability. HBP increases permeability through an interaction with luminal GAGs and activation of the PKC and Rho-kinase pathways. Heparins are potential inhibitors of HBP-induced increases in permeability. Electronic supplementary material The online version of this article (doi:10.1186/s40635-016-0104-3) contains supplementary material, which is available to authorized users.

Details

Language :
English
ISSN :
2197425X
Volume :
4
Database :
OpenAIRE
Journal :
Intensive Care Medicine Experimental
Accession number :
edsair.doi.dedup.....a3d73eb325aa697f6caa8bd19729ef98