Back to Search Start Over

Chitosan-Hyaluronan Nanoparticles for Vinblastine Sulfate Delivery: Characterization and Internalization Studies on K-562 Cells

Authors :
Carmela CannavĂ 
Federica De Gaetano
Rosanna Stancanelli
Valentina Venuti
Giuseppe Paladini
Francesco Caridi
Corneliu Ghica
Vincenza Crupi
Domenico Majolino
Guido Ferlazzo
Silvana Tommasini
Cinzia Anna Ventura
Source :
Pharmaceutics; Volume 14; Issue 5; Pages: 942
Publication Year :
2022
Publisher :
Multidisciplinary Digital Publishing Institute, 2022.

Abstract

In the present study, we developed chitosan/hyaluronan nanoparticles (CS/HY NPs) for tumor targeting with vinblastine sulfate (VBL), that can be directed to the CD44 transmembrane receptor, over-expressed in cancer cells. NPs were prepared by coating with HY-preformed chitosan/tripolyphosphate (CS/TPP) NPs, or by polyelectrolyte complexation of CS with HY. NPs with a mean hydrodynamic radius (RH) of 110 nm, 12% polydispersity index and negative zeta potential values were obtained by a direct complexation process. Transmission Electron Microscopy (TEM) images showed spherical NPs with a non-homogeneous matrix, probably due to a random localization of CS and HY interacting chains. The intermolecular interactions occurring between CS and HY upon NPs formation were experimentally evidenced by micro-Raman (µ-Raman) spectroscopy, through the analysis of the spectral changes of characteristic vibrational bands of HY during NP formation, in order to reveal the involvement of specific chemical groups in the process. Optimized NP formulation efficiently encapsulated VBL, producing a drug sustained release for 20 h. In vitro studies demonstrated a fast internalization of labeled CS/HY NPs (within 6 h) on K-562 human myeloid leukemia cells. Pre-saturation of CD44 by free HY produced a slowing-down of NP uptake over 24 h, demonstrating the need of CD44 for the internalization of HY-based NPs.

Details

Language :
English
ISSN :
19994923
Database :
OpenAIRE
Journal :
Pharmaceutics; Volume 14; Issue 5; Pages: 942
Accession number :
edsair.doi.dedup.....a3c6e8aac8e20fcc9767fadf4654df2d
Full Text :
https://doi.org/10.3390/pharmaceutics14050942