Back to Search Start Over

Ultrasound-Triggered Phase-Transition Cationic Nanodroplets for Enhanced Gene Delivery

Authors :
Zhe Yang
Ya Chen
Ming Xu
Di Gao
Xiaoyan Xie
Jie Liu
Qing Jiang
Zhong Cao
Yingqin Li
Jinbiao Gao
Wei Wang
Source :
ACS Applied Materials & Interfaces. 7:13524-13537
Publication Year :
2015
Publisher :
American Chemical Society (ACS), 2015.

Abstract

Ultrasound as an external stimulus for enhanced gene transfection represents a safe, noninvasive, cost-effective delivery strategy for gene therapy. Herein, we have developed an ultrasound-triggered phase-transition cationic nanodroplet based on a novel perfluorinated amphiphilic poly(amino acid), which could simultaneously load perfluoropentane (PFP) and nucleic acids. The heptadecafluoroundecylamine (C11F17-NH2) was chosen to initiate β-benzyl-L-aspartate N-carboxyanhydride (BLA-NCA) ring-opening polymerization to prepare C11F17-poly(β-benzyl-L-aspartate) (C11F17-PBLA). Subsequently, C11F17-poly{N-[N'-(2-aminoethyl)]aspartamide} [C11F17-PAsp(DET)] was synthesized by aminolysis reaction of C11F17-PBLA with diethylenetriamine (DET). PFP/pDNA-loaded nanodroplets PFP-TNDs [PFP/C11F17-PAsp(DET)/LucDNA/γ-PGA or poly(glutamic acid)-g-MeO-poly(ethylene glycol) (PGA-g-mPEG) ternary nanodroplets] were primarily formulated by an oil/water emulsification method, followed by surface modification with PGA-g-mPEG. The average diameter of PFP-TNDs ranged from 300 to 400 nm, and transmission electron microscopy images showed that the nanodroplets were nearly spherical in shape. The ζ potential of the nanodroplets dramatically decreased from +54.3 to +15.3 mV after modification with PGA-g-mPEG, resulting in a significant increase of the stability of the nanodroplets in the serum-containing condition. With ultrasound irradiation, the gene transfection efficiency was enhanced 14-fold on HepG2 cells, and ultrasound-triggered phase-transition cationic nanodroplets also displayed a good ultrasound contrast effect. These results suggest that the PFP/DNA-loaded phase-transition cationic nanodroplets can be utilized as efficient theranostic agents for targeting gene delivery.

Details

ISSN :
19448252 and 19448244
Volume :
7
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....a3c30f4179d10386fe1fdf031e740155