Back to Search Start Over

Enzymatic production of xylooligosaccharide from date (Phoenix dactylifera L.) seed

Authors :
Hassan Ahmadi-Gavlighi
Davoud Ataei
Zohreh Hamidi-Esfahani
Source :
Food Science & Nutrition
Publication Year :
2020
Publisher :
John Wiley and Sons Inc., 2020.

Abstract

Date palm (phonix dactylifera L.) is an important tropical fruit growing in central and southern regions of Iran. Date seed is composed of cellulose, hemicellulose, and lignin, that make it an excellent candidate for xylooligosaccharide (XOS) production. In this study, two different protocols are used for the extraction of hemicellulose from date seeds. In the first protocol, hemicellulose (xylan1) was extracted by 2.25 M alkaline solution at room temperature for 24 hr. In the second protocol, date seed was treated with LCHTA (low concentration, 0.1 M, high temperature, 80°C, alkaline solution) for 3 hr, and thereafter, hemicellulose (xylan2) was extracted by 2.25 M alkaline solution at room temperature for 24 hr. The carbohydrate units of xylan1 and xylan2 were qualified and quantified by HPAEC‐ PAD. Side groups of xylan1 and xylan2 were detected by FTIR. In the next step, xylan1 and xylan2 were exposed to two commercial endoxylanases namely veron 191 and pentopan mono BG. Temperature, pH, time, and enzyme dosage of hydrolyzation were optimized to maximize XOS and minimize xylose. The results showed that the enzymes successfully hydrolyzed xylan2 and produced XOS, but cannot hydrolyze xylan1. Pentopan mono BG and veron 191 produced the highest amount of XOS after 4 (1.17 mmol/g) and 6 hr (1.13 mmol/g) of incubation, respectively. Conversion factors of xylan2 to XOS for pentopan mono BG and veron were 0.41 and 0.36, respectively. This study presence the possible prebiotic properties of date seed XOS and its application in functional foods.<br />Low polymerization degree xylooligosaccharides (XOS) were produced from date seed. A special treatment (0.1 N NaOH at 80°C) is essential prior to xylan extraction. Temperature, pH, reaction time and enzyme dosage were optimized. Xylanase type, enzyme dosage and hydrolysis period affect the degree of polymerization of XOS.

Details

Language :
English
ISSN :
20487177
Volume :
8
Issue :
12
Database :
OpenAIRE
Journal :
Food Science & Nutrition
Accession number :
edsair.doi.dedup.....a3b79620440c49943e286b9a83372684