Back to Search Start Over

On the Intersection of a Sparse Curve and a Low-Degree Curve: A Polynomial Version of the Lost Theorem

Authors :
Sébastien Tavenas
Pascal Koiran
Natacha Portier
Laboratoire de l'Informatique du Parallélisme (LIP)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Modèles de calcul, Complexité, Combinatoire (MC2)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
ANR-13-BS02-0001,CompA,Complexité algébrique(2013)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Source :
Discrete and Computational Geometry, Discrete and Computational Geometry, 2015, pp.16, Discrete and Computational Geometry, Springer Verlag, 2015, pp.16
Publication Year :
2014
Publisher :
Springer Science and Business Media LLC, 2014.

Abstract

Consider a system of two polynomial equations in two variables: $$\begin{aligned} F(X,Y)=G(X,Y)=0, \end{aligned}$$F(X,Y)=G(X,Y)=0,where $$F \in \mathbb {R}[X,Y]$$F?R[X,Y] has degree $$d \ge 1$$d?1 and $$G \in \mathbb {R}[X,Y]$$G?R[X,Y] has $$t$$t monomials. We show that the system has only $$O(d^3t+d^2t^3)$$O(d3t+d2t3) real solutions when it has a finite number of real solutions. This is the first polynomial bound for this problem. In particular, the bounds coming from the theory of fewnomials are exponential in $$t$$t, and count only non-degenerate solutions. More generally, we show that if the set of solutions is infinite, it still has at most $$O(d^3t+d^2t^3)$$O(d3t+d2t3) connected components. By contrast, the following question seems to be open: if $$F$$F and $$G$$G have at most $$t$$t monomials, is the number of (non-degenerate) solutions polynomial in $$t$$t? The authors' interest for these problems was sparked by connections between lower bounds in algebraic complexity theory and upper bounds on the number of real roots of "sparse like" polynomials.

Details

ISSN :
14320444 and 01795376
Volume :
53
Database :
OpenAIRE
Journal :
Discrete & Computational Geometry
Accession number :
edsair.doi.dedup.....a3aaf58e9476ecca7ad4a33786168c61
Full Text :
https://doi.org/10.1007/s00454-014-9642-1