Back to Search Start Over

Maximizing the expected number of components in an online search of a graph

Authors :
Fabricio Siqueira Benevides
Małgorzata Sulkowska
Wroclaw University of Science and Technology
Combinatorics, Optimization and Algorithms for Telecommunications (COATI)
COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Universidade Federal do Ceará = Federal University of Ceará (UFC)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Source :
Discrete Mathematics, Discrete Mathematics, Elsevier, 2022, 345 (1), pp.112668. ⟨10.1016/j.disc.2021.112668⟩, Discrete Mathematics, 2022, 345 (1), pp.112668. ⟨10.1016/j.disc.2021.112668⟩
Publication Year :
2020

Abstract

The following optimal stopping problem is considered. The vertices of a graph $G$ are revealed one by one, in a random order, to a selector. He aims to stop this process at a time $t$ that maximizes the expected number of connected components in the graph $\tilde{G}_t$, induced by the currently revealed vertices. The selector knows $G$ in advance, but different versions of the game are considered depending on the information that he gets about $\tilde{G}_t$. We show that when $G$ has $N$ vertices and maximum degree of order $o(\sqrt{N})$, then the number of components of $\tilde{G}_t$ is concentrated around its mean, which implies that playing the optimal strategy the selector does not benefit much by receiving more information about $\tilde{G}_t$. Results of similar nature were previously obtained by M. Laso\'n for the case where $G$ is a $k$-tree (for constant $k$). We also consider the particular cases where $G$ is a square, triangular or hexagonal lattice, showing that an optimal selector gains $cN$ components and we compute $c$ with an error less than $0.005$ in each case.<br />Comment: 17 pages, 4 figures

Details

Language :
English
ISSN :
0012365X
Database :
OpenAIRE
Journal :
Discrete Mathematics, Discrete Mathematics, Elsevier, 2022, 345 (1), pp.112668. ⟨10.1016/j.disc.2021.112668⟩, Discrete Mathematics, 2022, 345 (1), pp.112668. ⟨10.1016/j.disc.2021.112668⟩
Accession number :
edsair.doi.dedup.....a3a8c31422888bcb00b812c5fc2427de
Full Text :
https://doi.org/10.1016/j.disc.2021.112668⟩