Back to Search Start Over

Statistical methods in multi-speaker automatic speech recognition

Authors :
Jean-Paul Haton
J. F. Mari
Anne Boyer
P. Divoux
Kamel Smaïli
J.-C. Di Martino
Analysis, perception and recognition of speech (PAROLE)
INRIA Lorraine
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Source :
ASMDA-4th International Symposium on Applied stochastic models and data analysis-1988, ASMDA-4th International Symposium on Applied stochastic models and data analysis-1988, 1988, Nancy, France, Applied Stochastic Models and Data Analysis, Applied Stochastic Models and Data Analysis, John Wiley & Sons, 1990, 6 (3), pp.143-155. ⟨10.1002/asm.3150060302⟩, Applied Stochastic Models and Data Analysis, 1990, 6 (3), pp.143-155. ⟨10.1002/asm.3150060302⟩
Publication Year :
1988
Publisher :
HAL CCSD, 1988.

Abstract

International audience; Automatic speech recognition and understanding (ASR) plays an important role in the framework of man-machine communication. Substantial industrial developments are at present in progress in this area. However, after 40 years or so of efforts several fundamental questions remain open. This paper is concerned with a comparative study of four different methods for multi-speaker word recognition: (i) clustering of acoustic templates, (ii) comparison with a finite state automaton, (iii) dynamic programming and vector quantization, (iv) stochastic Markov sources. In order to make things comparable, the four methods were tested with the same material made up of the ten digits (0 to 9) pronounced four times by 60 different speakers (30 males and 30 females). We will distinguish in our experiments between multi-speaker systems (capable of recognizing words pronounced by speakers that have been used during the training phase of the system) and speaker-independent systems (capable of recognizing words pronounced by speakers totally unknown to the system). Half of the corpus (15 male and 15 female) were used for training, and the remaining part for test.

Details

Language :
English
ISSN :
87550024 and 10990747
Database :
OpenAIRE
Journal :
ASMDA-4th International Symposium on Applied stochastic models and data analysis-1988, ASMDA-4th International Symposium on Applied stochastic models and data analysis-1988, 1988, Nancy, France, Applied Stochastic Models and Data Analysis, Applied Stochastic Models and Data Analysis, John Wiley & Sons, 1990, 6 (3), pp.143-155. ⟨10.1002/asm.3150060302⟩, Applied Stochastic Models and Data Analysis, 1990, 6 (3), pp.143-155. ⟨10.1002/asm.3150060302⟩
Accession number :
edsair.doi.dedup.....a38feb4f9ec0bc82c5c6ba8cad035790
Full Text :
https://doi.org/10.1002/asm.3150060302⟩