Back to Search Start Over

Artificial Intelligence, Ethics, and Diffused Pivotality

Authors :
Klockmann, Victor
von Schenk, Alicia
Villeval, Marie-Claire
Goethe-University Frankfurt am Main
Max Planck Institute for Human Development
Max-Planck-Gesellschaft
Groupe d'analyse et de théorie économique (GATE Lyon Saint-Étienne)
Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Lumière - Lyon 2 (UL2)-École normale supérieure - Lyon (ENS Lyon)
Forschungsinstitut zur Zukunft der Arbeit - Institute of Labor Economics (IZA)
Dao, Taï
Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne (GATE Lyon Saint-Étienne)
École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

With Big Data, decisions made by machine learning algorithms depend on training data generated by many individuals. In an experiment, we identify the effect of varying individual responsibility for the moral choices of an artificially intelligent algorithm. Across treatments, we manipulated the sources of training data and thus the impact of each individual's decisions on the algorithm. Diffusing such individual pivotality for algorithmic choices increased the share of selfish decisions and weakened revealed prosocial preferences. This does not result from a change in the structure of incentives. Rather, our results show that Big Data offers an excuse for selfish behavior through lower responsibility for one's and others' fate.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....a377488010a05fbebe9f747ae35eaee9