Back to Search
Start Over
p-Regular conjugacy classes and p-rational irreducible characters
- Source :
- Journal of Algebra. 607:387-425
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- Let $G$ be a finite group of order divisible by a prime $p$. The number of $p$-regular and $p'$-regular conjugacy classes of $G$ is at least $2\sqrt{p-1}$. Also, the number of $p$-rational and $p'$-rational irreducible characters of $G$ is at least $2\sqrt{p-1}$. Along the way we prove a uniform lower bound for the number of $p$-regular classes in a finite simple group of Lie type in terms of its rank and size of the underlying field.<br />46 pages
- Subjects :
- Finite group
Algebra and Number Theory
010102 general mathematics
Field (mathematics)
Group Theory (math.GR)
20E45, 20C15, 20D05, 20D06, 20D10
01 natural sciences
Upper and lower bounds
Prime (order theory)
Combinatorics
Conjugacy class
Simple group
0103 physical sciences
FOS: Mathematics
Order (group theory)
Rank (graph theory)
010307 mathematical physics
Representation Theory (math.RT)
0101 mathematics
Mathematics - Group Theory
Mathematics - Representation Theory
Mathematics
Subjects
Details
- ISSN :
- 00218693
- Volume :
- 607
- Database :
- OpenAIRE
- Journal :
- Journal of Algebra
- Accession number :
- edsair.doi.dedup.....a371eb4bb477e6437b4054c0d306d047