Back to Search Start Over

Redundancy of triangle groups in spherical CR representations

Authors :
Raphaël V. Alexandre
OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Sorbonne Université (SU)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Falbel, Koseleff and Rouillier computed a large number of boundary unipotent CR representations of fundamental groups of non compact three-manifolds. Those representations are not always discrete. By experimentally computing their limit set, one can determine that those with fractal limit sets are discrete. Many of those discrete representations can be related to (3,3,n) complex hyperbolic triangle groups. By exact computations, we verify the existence of those triangle representations, which have boundary unipotent holonomy. We also show that many representations are redundant: for n fixed, all the (3,3,n) representations encountered are conjugate and only one among them is uniformizable.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....a335e98fc2437309183181bd21d4615b