Back to Search
Start Over
Fluid and solid mechanical implications of vascular stenting
- Source :
- Annals of biomedical engineering. 30(4)
- Publication Year :
- 2002
-
Abstract
- Vascular stents have emerged as an effective treatment for occlusive vascular disease. Despite their success and widespread use, outcomes for patients receiving stents are still hampered by thrombosis and restensosis. As arteries attempt to adapt to the mechanical changes created by stents, they may in fact create a new flow-limiting situation similar to that which they were intended to correct. In vitro fluid mechanics and solid mechanics studies of stented vessels have revealed important information about how stents alter the mechanical environment in the arteries into which they are placed. Adverse nonlaminar flow patterns have been demonstrated as well as remarkably high stress concentrations in the vessel wall. In vivo studies of stented vessels have also shown a strong relationship between stent design and their dynamic performance within arteries. Alterations in pressure and flow pulses distal to the stent have been observed, as well as regional changes in vascular compliance. Considering the influence of flow and stress on the vascular response and the suboptimal clinical outcomes associated with stenting, knowledge gained from stent/artery mechanics studies should play an increasingly important role in improving the long-term patency of these devices. © 2002 Biomedical Engineering Society. PAC2002: 8719Rr, 8780-y, 8719Uv
- Subjects :
- medicine.medical_specialty
Intimal hyperplasia
Arteriosclerosis
medicine.medical_treatment
Biomedical Engineering
Hemodynamics
Prosthesis Design
Restenosis
Internal medicine
Medicine
Effective treatment
Humans
cardiovascular diseases
Vascular Diseases
Hyperplasia
medicine.diagnostic_test
business.industry
Graft Occlusion, Vascular
Models, Cardiovascular
Stent
Interventional radiology
Thrombosis
Arteries
equipment and supplies
medicine.disease
surgical procedures, operative
medicine.anatomical_structure
Hemorheology
Cardiology
Stents
Radiology
Stress, Mechanical
business
Blood Flow Velocity
Artery
Subjects
Details
- ISSN :
- 00906964
- Volume :
- 30
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Annals of biomedical engineering
- Accession number :
- edsair.doi.dedup.....a335ac4cbb62bdd1b7a62cf3cd12ccf0