Back to Search Start Over

Stability analysis of a vision-based UAV controller for autonomous road following missions

Authors :
L. R. García Carrillo
Adrián Ramírez
Rogelio Lozano
Eduardo S. Espinoza
Sabine Mondié
Departamento de Control Automático (CINVESTAV-IPN)
Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN)
Laboratoire Franco-Mexicain d'Informatique et d'Automatique (LAFMIA)
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)-Université Joseph Fourier - Grenoble 1 (UJF)-Université de Technologie de Compiègne (UTC)-Consejo Nacional de Ciencia y Tecnología [Mexico] (CONACYT)-Centre National de la Recherche Scientifique (CNRS)
Center for Control, Dynamical-Systems, and Computation [Santa Barbara] (CCDC)
University of California [Santa Barbara] (UCSB)
University of California-University of California
Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] (Heudiasyc)
Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS)
Source :
International Conference on Unmanned Aircraft Systems (ICUAS 2013), International Conference on Unmanned Aircraft Systems (ICUAS 2013), May 2013, Atlanta, GA, United States. pp.1135-1143, ⟨10.1109/ICUAS.2013.6564804⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

International audience; The stability analysis of a vision-based control strategy for a quad rotorcraft UAV is addressed. In the present application, the imaging sensing system provides the required states for performing autonomous navigation missions, however, it introduces latencies and time-delays from the time of capture to the time when measurements are available. To overcome this issue, a hierarchical controller is designed considering a timescale separation between fast and slow dynamics. The dynamics of the fast-time system are stabilized using classical proportional derivative controllers. Additionally, delay frequency and time domain techniques are explored to design a controller for the slow-time system. Simulations and experimental results consisting on a vision-based road following task are presented, verifying the efficacy of the approach and showing the benefits of the stability analysis performed.

Details

Language :
English
Database :
OpenAIRE
Journal :
International Conference on Unmanned Aircraft Systems (ICUAS 2013), International Conference on Unmanned Aircraft Systems (ICUAS 2013), May 2013, Atlanta, GA, United States. pp.1135-1143, ⟨10.1109/ICUAS.2013.6564804⟩
Accession number :
edsair.doi.dedup.....a31a40964a60317acc91b5e6a68f4716