Back to Search Start Over

Emergent representations in networks trained with the Forward-Forward algorithm

Authors :
Tosato, Niccolò
Basile, Lorenzo
Ballarin, Emanuele
de Alteriis, Giuseppe
Cazzaniga, Alberto
Ansuini, Alessio
Publication Year :
2023
Publisher :
arXiv, 2023.

Abstract

The Backpropagation algorithm, widely used to train neural networks, has often been criticised for its lack of biological realism. In an attempt to find a more biologically plausible alternative, and avoid to back-propagate gradients in favour of using local learning rules, the recently introduced Forward-Forward algorithm replaces the traditional forward and backward passes of Backpropagation with two forward passes. In this work, we show that internal representations obtained with the Forward-Forward algorithm organize into robust, category-specific ensembles, composed by an extremely low number of active units (high sparsity). This is remarkably similar to what is observed in cortical representations during sensory processing. While not found in models trained with standard Backpropagation, sparsity emerges also in networks optimized by Backpropagation, on the same training objective of Forward-Forward. These results suggest that the learning procedure proposed by Forward-Forward may be superior to Backpropagation in modelling learning in the cortex, even when a backward pass is used.<br />Comment: 14 pages, 8 figures

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....a2fbc52fe92feeec6e6a1abda0d7b053
Full Text :
https://doi.org/10.48550/arxiv.2305.18353