Back to Search Start Over

Functional norms, condition numbers and numerical algorithms in algebraic geometry

Authors :
Felipe Cucker
Alperen A. Ergür
Josué Tonelli-Cueto
City University of Hong Kong [Hong Kong] (CUHK)
The University of Texas at San Antonio (UTSA)
OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Einstein Foundation Berlin
postdoctoral fellowship of the 2020 ‘Interaction’ program of the Fondation Sciences Mathématiques de Paris
GRF grant CityU 11300220
NSF CCF 211 00 75
ANR-17-CE40-0009,GALOP,Jeux à travers la lentille de algèbre et géométrie de l'optimisation(2017)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Source :
Forum of Mathematics, Sigma, Forum of Mathematics, Sigma, 2022, 10, pp.e103. ⟨10.1017/fms.2022.89⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

In numerical linear algebra, a well-established practice is to choose a norm that exploits the structure of the problem at hand in order to optimize accuracy or computational complexity. In numerical polynomial algebra, a single norm (attributed to Weyl) dominates the literature. This article initiates the use of $L_p$ norms for numerical algebraic geometry, with an emphasis on $L_{\infty}$. This classical idea yields strong improvements in the analysis of the number of steps performed by numerous iterative algorithms. In particular, we exhibit three algorithms where, despite the complexity of computing $L_{\infty}$-norm, the use of $L_p$-norms substantially reduces computational complexity: a subdivision-based algorithm in real algebraic geometry for computing the homology of semialgebraic sets, a well-known meshing algorithm in computational geometry, and the computation of zeros of systems of complex quadratic polynomials (a particular case of Smale's 17th problem).<br />54 pages

Details

Language :
English
ISSN :
20505094
Database :
OpenAIRE
Journal :
Forum of Mathematics, Sigma, Forum of Mathematics, Sigma, 2022, 10, pp.e103. ⟨10.1017/fms.2022.89⟩
Accession number :
edsair.doi.dedup.....a2e81848433c8697229b94d5c3576861
Full Text :
https://doi.org/10.1017/fms.2022.89⟩