Back to Search Start Over

Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT

Authors :
Michelle Han
S. Simon Wong
Edward H. Lee
Felipe Kitamura
Majid Maleki
Errol Colak
Masoumeh Gity
Ali Mohammadzadeh
Nitamar Abdala
Chad Klochko
Kavous Firouznia
Kristen W. Yeom
Jimmy Zheng
Golnaz Houshmand
Hamidreza Pouraliakbar
Çetin Atasoy
Hakan Dogan
Hossien Ghanaati
Hashem Sharifian
Sadegh Moradian
Nicholas Bevins
Henrique Alves
Maryam Mohammadzadeh
Hassan Hashemi
Hojjat Salehinejad
Jae Kwang Kim
Eduardo Pontes Reis
Emre Altinmakas
Jayne Seekins
Altınmakas, Emre
Doğan, Hakan (ORCID 0000-0003-2613-0228 & YÖK ID 327614)
Atasoy, Kayhan Çetin
Lee, Edward H.
Zheng, Jimmy
Colak, Errol
Mohammadzadeh, Maryam
Houshmand, Golnaz
Bevins, Nicholas
Kitamura, Felipe
Reis, Eduardo Pontes
Kim, Jae-Kwang
Klochko, Chad
Han, Michelle
Moradian, Sadegh
Mohammadzadeh, Ali
Sharifian, Hashem
Hashemi, Hassan
Firouznia, Kavous
Ghanaati, Hossien
Gity, Masoumeh
Salehinejad, Hojjat
Alves, Henrique
Seekins, Jayne
Abdala, Nitamar
Pouraliakbar, Hamidreza
Maleki, Majid
Wong, S. Simon
Yeom, Kristen W.
School of Medicine
Source :
NPJ Digital Medicine, npj Digital Medicine, Vol 4, Iss 1, Pp 1-11 (2021), npj Digital Medicine
Publication Year :
2021
Publisher :
Nature Publishing Group (NPG), 2021.

Abstract

The Coronavirus disease 2019 (COVID-19) presents open questions in how we clinically diagnose and assess disease course. Recently, chest computed tomography (CT) has shown utility for COVID-19 diagnosis. In this study, we developed Deep COVID DeteCT (DCD), a deep learning convolutional neural network (CNN) that uses the entire chest CT volume to automatically predict COVID-19 (COVID+) from non-COVID-19 (COVID-) pneumonia and normal controls. We discuss training strategies and differences in performance across 13 international institutions and 8 countries. The inclusion of non-China sites in training significantly improved classification performance with area under the curve (AUCs) and accuracies above 0.8 on most test sites. Furthermore, using available follow-up scans, we investigate methods to track patient disease course and predict prognosis.<br />Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H); RISE Program; Stanford Center for Artificial Intelligence in Medicine and Imaging (AIMI)

Details

Language :
English
Database :
OpenAIRE
Journal :
NPJ Digital Medicine, npj Digital Medicine, Vol 4, Iss 1, Pp 1-11 (2021), npj Digital Medicine
Accession number :
edsair.doi.dedup.....a2deda76e4fe8866666d554d53bd46f9