Back to Search
Start Over
Negligible Obstructions and TurĂ¡n Exponents
- Source :
- Annals of Applied Mathematics. 38:356-384
- Publication Year :
- 2022
- Publisher :
- Global Science Press, 2022.
-
Abstract
- We show that for every rational number $r \in (1,2)$ of the form $2 - a/b$, where $a, b \in \mathbb{N}^+$ satisfy $\lfloor b/a \rfloor^3 \le a \le b / (\lfloor b/a \rfloor +1) + 1$, there exists a graph $F_r$ such that the Tur\'an number $\operatorname{ex}(n, F_r) = \Theta(n^r)$. Our result in particular generates infinitely many new Tur\'an exponents. As a byproduct, we formulate a framework that is taking shape in recent work on the Bukh--Conlon conjecture.<br />Comment: 23 pages, 5 figures, published in Annals of Applied Mathematics
Details
- ISSN :
- 20960174
- Volume :
- 38
- Database :
- OpenAIRE
- Journal :
- Annals of Applied Mathematics
- Accession number :
- edsair.doi.dedup.....a2cd7748a42c068b926e1ca193e0dde5