Back to Search Start Over

Negligible Obstructions and TurĂ¡n Exponents

Authors :
Tao Jiang
Zilin Jiang
Jie Ma
Source :
Annals of Applied Mathematics. 38:356-384
Publication Year :
2022
Publisher :
Global Science Press, 2022.

Abstract

We show that for every rational number $r \in (1,2)$ of the form $2 - a/b$, where $a, b \in \mathbb{N}^+$ satisfy $\lfloor b/a \rfloor^3 \le a \le b / (\lfloor b/a \rfloor +1) + 1$, there exists a graph $F_r$ such that the Tur\'an number $\operatorname{ex}(n, F_r) = \Theta(n^r)$. Our result in particular generates infinitely many new Tur\'an exponents. As a byproduct, we formulate a framework that is taking shape in recent work on the Bukh--Conlon conjecture.<br />Comment: 23 pages, 5 figures, published in Annals of Applied Mathematics

Details

ISSN :
20960174
Volume :
38
Database :
OpenAIRE
Journal :
Annals of Applied Mathematics
Accession number :
edsair.doi.dedup.....a2cd7748a42c068b926e1ca193e0dde5