Back to Search Start Over

An electron acceptor molecule in a nanomesh: F4TCNQ on h-BN/Rh(111)

Authors :
Thomas Greber
Shi-Xia Liu
Huanyao Cun
Silvio Decurtins
Jürg Osterwalder
Silvan Roth
Ari P. Seitsonen
University of Zurich
Cun, Huanyao
Physik-Institut [Zürich]
Universität Zürich [Zürich] = University of Zurich (UZH)
Institute of Bioengineering [Lausanne, Suisse]
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Département de Chimie, École Normale Supérieure
Institut für Chemie [Zürich]
Institut de Physique - Ecole Polytechnique Fédérale de Lausanne
Department of Chemistry and Biochemistry [Bern]
University of Bern
Source :
Cun, Huanyao; Seitsonen, Ari Paavo; Roth, Silvan; Decurtins, Silvio; Liu, Shi-Xia; Osterwalder, Jürg; Greber, Thomas (2018). An electron acceptor molecule in a nanomesh: F 4 TCNQ on h-BN/Rh(111). Surface science, 678, pp. 183-188. Elsevier 10.1016/j.susc.2018.04.026 , Surface Science : A Journal Devoted to the Physics and Chemistry of Interfaces, Surface Science : A Journal Devoted to the Physics and Chemistry of Interfaces, 2018, 678, pp.183-188. ⟨10.1016/j.susc.2018.04.026⟩
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

The adsorption of molecules on surfaces affects the surface dipole and thus changes in the work function may be expected. The effect in change of work function is particularly strong if charge between substrate and adsorbate is involved. Here we report the deposition of a strong electron acceptor molecule, tetrafluorotetracyanoquinodimethane C$_{12}$F$_4$N$_4$ (F$_{4}$TCNQ) on a monolayer of hexagonal boron nitride nanomesh ($h$-BN on Rh(111)). The work function of the F$_{4}$TCNQ/$h$-BN/Rh system increases upon increasing molecular coverage. The magnitude of the effect indicates electron transfer from the substrate to the F$_{4}$TCNQ molecules. Density functional theory calculations confirm the work function shift and predict doubly charged F$_{4}$TCNQ$^{2-}$ in the nanomesh pores, where the $h$-BN is closest to the Rh substrate, and to have the largest binding energy there. The preferred adsorption in the pores is conjectured from a series of ultraviolet photoelectron spectroscopy data, where the $\sigma$ bands in the pores are first attenuated. Scanning tunneling microscopy measurements indicate that F$_{4}$TCNQ molecules on the nanomesh are mobile at room temperature, as "hopping" between neighboring pores is observed.

Details

ISSN :
00396028 and 18792758
Volume :
678
Database :
OpenAIRE
Journal :
Surface Science
Accession number :
edsair.doi.dedup.....a2bdfb5fe8a527ae2c05f80dd12bf52f
Full Text :
https://doi.org/10.1016/j.susc.2018.04.026