Back to Search Start Over

Insights into chemical composition, abatement mechanisms and regional transport of atmospheric pollutants in the Yangtze River Delta region, China during the COVID-19 outbreak control period

Authors :
Xiaodan Jin
Jinping Cheng
Juntao Huo
Qingyan Fu
Yanfen Lin
Haohao Jia
Xue Hu
Yusen Duan
Source :
Environmental Pollution (Barking, Essex : 1987)
Publication Year :
2020

Abstract

To investigate chemical characteristics, abatement mechanisms and regional transport of atmospheric pollutants during the COVID-19 outbreak control period in the Yangtze River Delta (YRD) region, China, the measurements of air pollutants including fine particulate matter (PM2.5) and volatile organic compounds (VOCs) on non-control period (NCP, 24 December 2019–23 January 2020) and control period (CP, 24 January–23 February 2020) were analyzed at the urban Pudong Supersite (PD) and the regional Dianshan Lake Supersite (DSL). Due to the stricter outbreak control, the levels of PM2.5 and VOCs, and the occurrence frequencies of haze-fog episodes decreased substantially from NCP to CP, with average reduction rates of 31.6%, 38.9% and 35.1% at PD, and 34.5%, 50.7% and 37.9% at DSL, respectively. The major source for PM2.5 was secondary sulfate & nitrate in both periods, and the emission control of primary sources such as coal burning and vehicle exhaust decreased the levels of precursors gas sulfur dioxide and nitrogen oxide, which highly contributed to the abatement of PM2.5 from NCP to CP. The higher levels of ozone at both PD and DSL on CP might be due to the weak nitrogen monoxide titration, low relative humidity and high visibility compared with NCP. Vehicle exhaust and fugitive emission from petrochemical industry were the major contributors of ambient VOCs and their decreasing activities mainly accounted for VOCs abatement. Moreover, the high frequency of haze-fog events was closely impacted by medium-scale regional transport within Anhui and Jiangsu provinces. Therefore, the decreasing regional transported air pollutants coincided with the emission control of local sources to cause the abatement of haze-fog events in YRD region on CP. This study could improve the understanding of the change of atmospheric pollutants during the outbreak control period, and provide scientific base for haze-fog pollution control in YRD region, China.<br />Graphical abstract Image 1<br />Highlights • PM2.5 and VOCs levels were decreased substantially from NCP to CP. • Declining secondary formation highly contributed to abatement of PM2.5. • Weak NO titration, low RH and high visibility might cause the high O3 level on CP. • Decreasing vehicle exhaust and fugitive emission mainly accounted for VOCs abatement. • Haze-fog events were closely impacted by medium-scale regional transport.

Details

ISSN :
18736424
Volume :
267
Database :
OpenAIRE
Journal :
Environmental pollution (Barking, Essex : 1987)
Accession number :
edsair.doi.dedup.....a2b5f5a1afc4b2b752eb8fe48135677a