Back to Search Start Over

Insights into the gut bacterial communities of spider from wild with no evidence of phylosymbiosis

Authors :
Vikas Kumar
Inderjeet Tyagi
Kaomud Tyagi
Source :
Saudi Journal of Biological Sciences
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

In the present study, an effort has been made to elucidate the gut bacterial diversity of twelve species of the family Araneidae under three subfamilies collected from 5 states of India along with their predicted metabolic role in functional metabolism. Further, we also compared the host species phylogeny based on partial cytochrome c oxidase subunit I (COI) sequences with the gut bacteria composition dendrogram to decipher the phylosymbiotic relationships. Analysis revealed the presence of 22 bacterial phyla, 145 families, and 364 genera in the gut, with Proteobacteria, Firmicutes, Actinobacteria, and Deinococcus-Thermus as the highest abundant phyla. Moreover, phylum Bacteriodetes was dominated only in Cyclosa mulmeinensis and Chlamydiae in Neoscona bengalensis. At the genus level, Bacillus, Acinetobacter, Cutibacterium, Pseudomonas, and Staphylococcus were the most dominant genera. Furthermore, the genus Prevotella was observed only in Cyclosa mulmeinensis, and endosymbiont Wolbachia only in Eriovixia laglaizei. The differential abundance analysis (DeSeq2) revealed the 19 significant ASVs represented by the genera like Acinetobacter, Vagoccoccus, Prevotella, Staphylococcus, Curvibacter, Corynebacterium, Paracoccus, Streptococcus, Microbacterium, and Pseudocitrobacter. The inter- and intra-subfamilies comparison based on diversity indices (alpha and beta diversity) revealed that the subfamily Araneinae have high richness and diversity than Argiopinae and Gasteracanthinae. The phylosymbiotic analysis revealed that there is no congruence between the gut bacteria composition dendrogram with their host phylogeny.

Details

ISSN :
1319562X
Volume :
28
Database :
OpenAIRE
Journal :
Saudi Journal of Biological Sciences
Accession number :
edsair.doi.dedup.....a2ae22a55f4ae71a88b74dee4a986def