Back to Search
Start Over
Differently Charged Super-Paramagnetic Iron Oxide Nanoparticles Preferentially Induced M1-Like Phenotype of Macrophages
- Source :
- Frontiers in Bioengineering and Biotechnology, Vol 8 (2020), Frontiers in Bioengineering and Biotechnology
- Publication Year :
- 2020
- Publisher :
- Frontiers Media SA, 2020.
-
Abstract
- Macrophages are mainly divided into two phenotypes: M1-like (anti-tumoral, pro-inflammatory) and M2-like (pro-tumoral, anti-inflammatory). The more abundant M2-like phenotype of tumor associated macrophages (TAMs) has been associated with poor prognosis in various cancers, therefore, many studies have been carried out to modulate TAMs to change from an M2 to M1-like phenotype as an effective way to suppress tumor growth. Previous study indicated that the FDA-approved Ferumoxytol is an iron oxide nanoparticle that has intrinsic tumor inhibiting properties and is accompanied by the increased presence of the pro-inflammatory, anti-tumoral M1-like phenotype. Intrigued by this finding, we hypothesize that differently charged super-paramagnetic iron oxide nanoparticles (SPIONs) would have preferential differences in polarizing macrophages. Herein, we report that differently charged SPIONs have distinct preferences in the modulation of TAM phenotypes. Positively charged SPION (S+) had the highest cellular uptake and highest macrophage polarization effect. Interestingly, although negatively charged SPION (S−) should present charge–charge repulsion with cell membranes, they showed considerably high uptake in vitro, nevertheless presenting the highest cellular toxicity. Neutrally charged SPION (SN) showed minimal uptake and cellular toxicity in vitro. Both S+ and S− could effectively re-polarize M2-like macrophages toward M1-like macrophages in vitro, and significantly increased the Fenton effect and chemotaxis of macrophages. When macrophages pre-treated with these SPIONs were co-injected with tumor cells to obtain a tumor xenograft, S+ and S− treated macrophages significantly induced tumor retardation, indicating the successful repolarization of tumor macrophages by these SPIONs. Taken together, we provide an insight on the importance of SPION charge in immunomodulation of macrophages.
- Subjects :
- Histology
TAMs
lcsh:Biotechnology
Cell
Biomedical Engineering
Macrophage polarization
Bioengineering
chemistry.chemical_compound
lcsh:TP248.13-248.65
medicine
M1-like phenotype
Original Research
Chemistry
SPION
Bioengineering and Biotechnology
Chemotaxis
M2-like phenotype
Phenotype
In vitro
Cell biology
Ferumoxytol
medicine.anatomical_structure
Toxicity
tumor suppression
Iron oxide nanoparticles
Biotechnology
Subjects
Details
- ISSN :
- 22964185
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Frontiers in Bioengineering and Biotechnology
- Accession number :
- edsair.doi.dedup.....a29d8799187cb3ca816a3f5a96b4a90f
- Full Text :
- https://doi.org/10.3389/fbioe.2020.00537