Back to Search Start Over

Spin filtering in germanium/silicon core/shell nanowires with pseudo-helical gap

Authors :
Russell S. Deacon
Koji Ishibashi
Jian Sun
Xiaochi Liu
Jun Yao
Source :
Applied Physics Letters. 117:052403
Publication Year :
2020
Publisher :
AIP Publishing, 2020.

Abstract

Semiconductors with strong spin-orbit interactions can exhibit a helical gap with spin-momentum locking opened by a magnetic field. Such a gap is highly spin selective as a result of a topologically protected spin-momentum locking, which can be used for spin filtering. We experimentally demonstrate such a spin filtering effect in a quasi-ballistic p-type germanium/silicon core/shell nanowire (NW), which possesses a pseudo-helical gap without the application of magnetic field. Polarized hole spin injection to the NW is achieved using cobalt ferromagnetic contacts with controlled natural surface oxide on the NW as a tunnel barrier. Local and nonlocal spin valve effects are measured as the verification of polarized spin transport in the NW outside the helical gap. We electrically tune the NW into the helical gap by scanning its chemical potential with a gate. A hysteresis loop with three resistance states is observed in the local spin valve geometry, as an evidence of spin filtering in the helical gap.<br />5 pages, 4 figures

Details

ISSN :
10773118 and 00036951
Volume :
117
Database :
OpenAIRE
Journal :
Applied Physics Letters
Accession number :
edsair.doi.dedup.....a2936bb40835bedbd6e7236ac708f492
Full Text :
https://doi.org/10.1063/5.0014148