Back to Search Start Over

ON PERMUTATION BINOMIALS OVER FINITE FIELDS

Authors :
Mohamed Ayad
Kacem Belghaba
Omar Kihel
Source :
Bulletin of the Australian Mathematical Society. 89:112-124
Publication Year :
2013
Publisher :
Cambridge University Press (CUP), 2013.

Abstract

Let ${ \mathbb{F} }_{q} $ be the finite field of characteristic $p$ containing $q= {p}^{r} $ elements and $f(x)= a{x}^{n} + {x}^{m} $, a binomial with coefficients in this field. If some conditions on the greatest common divisor of $n- m$ and $q- 1$ are satisfied then this polynomial does not permute the elements of the field. We prove in particular that if $f(x)= a{x}^{n} + {x}^{m} $ permutes ${ \mathbb{F} }_{p} $, where $n\gt m\gt 0$ and $a\in { \mathbb{F} }_{p}^{\ast } $, then $p- 1\leq (d- 1)d$, where $d= \gcd (n- m, p- 1)$, and that this bound of $p$, in terms of $d$ only, is sharp. We show as well how to obtain in certain cases a permutation binomial over a subfield of ${ \mathbb{F} }_{q} $ from a permutation binomial over ${ \mathbb{F} }_{q} $.

Details

ISSN :
17551633 and 00049727
Volume :
89
Database :
OpenAIRE
Journal :
Bulletin of the Australian Mathematical Society
Accession number :
edsair.doi.dedup.....a284ffd632f154247fef0fa508c5030d
Full Text :
https://doi.org/10.1017/s0004972713000208