Back to Search
Start Over
ON PERMUTATION BINOMIALS OVER FINITE FIELDS
- Source :
- Bulletin of the Australian Mathematical Society. 89:112-124
- Publication Year :
- 2013
- Publisher :
- Cambridge University Press (CUP), 2013.
-
Abstract
- Let ${ \mathbb{F} }_{q} $ be the finite field of characteristic $p$ containing $q= {p}^{r} $ elements and $f(x)= a{x}^{n} + {x}^{m} $, a binomial with coefficients in this field. If some conditions on the greatest common divisor of $n- m$ and $q- 1$ are satisfied then this polynomial does not permute the elements of the field. We prove in particular that if $f(x)= a{x}^{n} + {x}^{m} $ permutes ${ \mathbb{F} }_{p} $, where $n\gt m\gt 0$ and $a\in { \mathbb{F} }_{p}^{\ast } $, then $p- 1\leq (d- 1)d$, where $d= \gcd (n- m, p- 1)$, and that this bound of $p$, in terms of $d$ only, is sharp. We show as well how to obtain in certain cases a permutation binomial over a subfield of ${ \mathbb{F} }_{q} $ from a permutation binomial over ${ \mathbb{F} }_{q} $.
Details
- ISSN :
- 17551633 and 00049727
- Volume :
- 89
- Database :
- OpenAIRE
- Journal :
- Bulletin of the Australian Mathematical Society
- Accession number :
- edsair.doi.dedup.....a284ffd632f154247fef0fa508c5030d
- Full Text :
- https://doi.org/10.1017/s0004972713000208