Back to Search
Start Over
Enhancing Sensitivity for High-Selectivity Gas Chromatography-Molecular Rotational Resonance Spectroscopy
- Source :
- Analytical Chemistry. 93:15525-15533
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- A next-generation gas chromatograph-molecular rotational resonance (MRR) spectrometer (GC-MRR) with instrumental improvements and higher sensitivity is described. MRR serves as a structural information-rich detector for GC with extremely narrow linewidths and capabilities surpassing 1H nuclear magnetic resonance/Fourier transform infrared spectroscopy/mass spectrometry (MS) while offering unparalleled specificity in regard to a molecule's three-dimensional structure. With a Fabry-Perot cavity and a supersonic jet incorporated into a GC-MRR, dramatic improvements in sensitivity for molecules up to 244 Da were achieved in the microwave region compared to the only prior work, which demonstrated the GC-MRR idea for the first time with millimeter waves. The supersonic jet cools the analytes to ∼2 K, resulting in a limited number of molecular rotational and vibrational levels and enabling us to obtain stronger GC-MRR signals. This has allowed the limits of detection of the GC-MRR to be comparable to a GC thermal conductivity detector with an optimized choice of gases. The performance of this GC-MRR system is reported for a range of molecules with permanent dipole moments, including alcohols, nitrogen heterocyclics, halogenated compounds, dioxins, and nitro compounds in the molecular mass range of 46-244 Da. The lowest amount of any substance yet detected by MRR in terms of mass is reported in this work. A theoretically unexpected finding is reported for the first time about the effect of the GC carrier gas (He, Ne, and N2) on the sensitivity of the analysis in the presence of the gas driving the supersonic jet (He, Ne, and N2) in the GC-MRR. Finally, the idea of total molecule monitoring in the GC-MRR analogous to selected ion monitoring in GC-MS is illustrated. Structural isomers and isotopologues of bromobutanes and bromonitrobenzenes are used to demonstrate this concept.
Details
- ISSN :
- 15206882 and 00032700
- Volume :
- 93
- Database :
- OpenAIRE
- Journal :
- Analytical Chemistry
- Accession number :
- edsair.doi.dedup.....a278a0dfbdbf898bc3a9f07c1e9d32aa