Back to Search Start Over

Mining Fuzzy Moving Object Clusters

Authors :
Phan Nhat Hai
Dino Ienco
Maguelonne Teisseire
Pascal Poncelet
Fouille de données environnementales (TATOO)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
8th International Conference on Advanced Data Mining and Applications (ADMA), 8th International Conference on Advanced Data Mining and Applications (ADMA), Dec 2012, Nanjing, China. pp.100-114, ⟨10.1007/978-3-642-35527-1_9⟩, Advanced Data Mining and Applications ISBN: 9783642355264, ADMA, ADMA 2012, ADMA 2012, Dec 2012, Nanjing, pp.15
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; Recent improvements in positioning technology have led to a much wider availability of massive moving object data. One of the objectives of spatio-temporal data mining is to analyze such datasets to exploit moving objects that travel together. Naturally, the moving objects in a cluster may actually diverge temporarily and congregate at certain timestamps. Thus, there are time gaps among moving object clusters. Existing approaches either put a strong constraint (i.e. no time gap) or completely relaxed (i.e. whatever the time gaps) in dealing with the gaps may result in the loss of interesting patterns or the extraction of huge amount of extraneous patterns. Thus it is difficult for analysts to understand the object movement behavior. Motivated by this issue, we propose the concept of fuzzy swarm which softens the time gap constraint. The goal of our paper is to find all non-redundant fuzzy swarms, namely fuzzy closed swarm. As a contribution, we propose fCS-Miner al- gorithm which enables us to efficiently extract all the fuzzy closed swarms. Con- ducted experiments on real and large synthetic datasets demonstrate the effectiveness, parameter sensitiveness and efficiency of our methods.

Details

Language :
English
ISBN :
978-3-642-35526-4
ISBNs :
9783642355264
Database :
OpenAIRE
Journal :
8th International Conference on Advanced Data Mining and Applications (ADMA), 8th International Conference on Advanced Data Mining and Applications (ADMA), Dec 2012, Nanjing, China. pp.100-114, ⟨10.1007/978-3-642-35527-1_9⟩, Advanced Data Mining and Applications ISBN: 9783642355264, ADMA, ADMA 2012, ADMA 2012, Dec 2012, Nanjing, pp.15
Accession number :
edsair.doi.dedup.....a26a0deea1f3f06f8274430a7df73578
Full Text :
https://doi.org/10.1007/978-3-642-35527-1_9⟩