Back to Search Start Over

Powered Two-Wheeler Riding Pattern Recognition Using a Machine-Learning Framework

Authors :
Stéphane Espié
Abderrahmane Boubezoul
Ferhat Attal
Latifa Oukhellou
Laboratoire Exploitation, Perception, Simulateurs et Simulations ( IFSTTAR/COSYS/LEPSIS )
Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux ( IFSTTAR ) -Communauté Université Paris-Est
Génie des Réseaux de Transport Terrestres et Informatique Avancée ( IFSTTAR/COSYS/GRETTIA )
Département Transport, Santé, Sécurité ( IFSTTAR/TS2 )
Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux ( IFSTTAR ) -Université de Lyon
Laboratoire Exploitation, Perception, Simulateurs et Simulations (IFSTTAR/COSYS/LEPSIS)
Communauté Université Paris-Est-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)
Génie des Réseaux de Transport Terrestres et Informatique Avancée (IFSTTAR/COSYS/GRETTIA)
Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Communauté Université Paris-Est
Département Transport, Santé, Sécurité (IFSTTAR/TS2)
Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université de Lyon
Source :
IEEE Transactions on Intelligent Transportation Systems, IEEE Transactions on Intelligent Transportation Systems, IEEE, 2015, 16 (1), pp 475-487. 〈10.1109/TITS.2014.2346243〉, IEEE Transactions on Intelligent Transportation Systems, IEEE, 2015, 16 (1), pp 475-487. ⟨10.1109/TITS.2014.2346243⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

In this paper, a machine-learning framework is used for riding pattern recognition. The problem is formulated as a classification task to identify the class of riding patterns using data collected from 3-D accelerometer/gyroscope sensors mounted on motorcycles. These measurements constitute an experimental database used to analyze powered two-wheeler rider behavior. Several well-known machine-learning techniques are investigated, including the Gaussian mixture models, the $k$ -nearest neighbor model, the support vector machines, the random forests, and the hidden Markov models (HMMs), for both discrete and continuous cases. Additionally, an approach for sensor selection is proposed to identify the significant measurements for improved riding pattern recognition. The experimental study, performed on a real data set, shows the effectiveness of the proposed methodology and the effectiveness of the HMM approach in riding pattern recognition. These results encourage the development of these methodologies in the context of naturalistic riding studies.

Details

Language :
English
ISSN :
15249050
Database :
OpenAIRE
Journal :
IEEE Transactions on Intelligent Transportation Systems, IEEE Transactions on Intelligent Transportation Systems, IEEE, 2015, 16 (1), pp 475-487. 〈10.1109/TITS.2014.2346243〉, IEEE Transactions on Intelligent Transportation Systems, IEEE, 2015, 16 (1), pp 475-487. ⟨10.1109/TITS.2014.2346243⟩
Accession number :
edsair.doi.dedup.....a24516538e61c8f54b75221290222898
Full Text :
https://doi.org/10.1109/TITS.2014.2346243〉