Back to Search Start Over

High order numerical methods for the dynamic SGS model of turbulent flows with shocks

Authors :
Helen C. Yee
Alan A. Wray
D. V. Kotov
Björn Sjögreen
Abdellah Hadjadj
Bay Area Environmental Research Institute (BAER)
Atmospheric Chemistry and Dynamics Branch [Moffett Field]
NASA Ames Research Center (ARC)
Complexe de recherche interprofessionnel en aérothermochimie (CORIA)
Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie)
Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)
Lawrence Livermore National Laboratory (LLNL)
HADJADJ, Abdellah
NASA Ames Research Center Cooperative for Research in Earth Science in Technology (ARC-CREST)
Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie)
Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Source :
Scopus-Elsevier, Communications in Computational Physics, Communications in Computational Physics, Global Science Press, 2016, 19 (2), pp.273--300. ⟨10.4208/cicp.211014.040915a⟩, 22nd AIAA Computational Fluid Dynamics Conference, 22nd AIAA Computational Fluid Dynamics Conference, Jun 2015, Texas, United States

Abstract

Simulation of turbulent flows with shocks employing subgrid-scale (SGS) filtering may encounter a loss of accuracy in the vicinity of a shock. This paper addresses the accuracy improvement of LES of turbulent flows in two ways: (a) from the SGS model standpoint and (b) from the numerical method improvement standpoint. In an internal report, Kotov et al. ( “High Order Numerical Methods for large eddy simulation (LES) of Turbulent Flows with Shocks”, CTR Tech Brief, Oct. 2014, Stanford University), we performed a preliminary comparative study of different approaches to reduce the loss of accuracy within the framework of the dynamic Germano SGS model. The high order low dissipative method of Yee & Sjögreen (2009) using local flow sensors to control the amount of numerical dissipation where needed is used for the LES simulation. The considered improved dynamics model approaches include applying the one-sided SGS test filter of Sagaut & Germano (2005) and/or disabling the SGS terms at the shock location. For Mach 1.5 and 3 canonical shock-turbulence interaction problems, both of these approaches show a similar accuracy improvement to that of the full use of the SGS terms. The present study focuses on a five levels of grid refinement study to obtain the reference direct numerical simulation (DNS) solution for additional LES SGS comparison and approaches. One of the numerical accuracy improvements included here applies Harten's subcell resolution procedure to locate and sharpen the shock, and uses a one-sided test filter at the grid points adjacent to the exact shock location.

Details

ISSN :
18152406
Database :
OpenAIRE
Journal :
Scopus-Elsevier, Communications in Computational Physics, Communications in Computational Physics, Global Science Press, 2016, 19 (2), pp.273--300. ⟨10.4208/cicp.211014.040915a⟩, 22nd AIAA Computational Fluid Dynamics Conference, 22nd AIAA Computational Fluid Dynamics Conference, Jun 2015, Texas, United States
Accession number :
edsair.doi.dedup.....a21dc875d529c7b95a19fe3ecc0bd11b