Back to Search Start Over

Abnormal pattern of brain glucose metabolism in Parkinson’s disease: replication in three European cohorts

Authors :
Marco Pagani
Sanne K. Meles
Remco J. Renken
Maria C. Rodriguez-Oroz
Flavio Nobili
Teus van Laar
Silvia Morbelli
Klaus L. Leenders
Jose A. Obeso
Dario Arnaldi
Laura K. Teune
Perceptual and Cognitive Neuroscience (PCN)
Movement Disorder (MD)
Clinical Cognitive Neuropsychiatry Research Program (CCNP)
Source :
European journal of nuclear medicine and molecular imaging, 47 (2020): 437–450. doi:10.1007/s00259-019-04570-7, info:cnr-pdr/source/autori:Meles SK; Renken RJ; Pagani M; Teune LK, Arnaldi D; Morbelli S; Nobili F; van Laar T; Obeso JA; Rodríguez-Oroz MC, Leenders KL/titolo:Abnormal Pattern of Brain Glucose Metabolism in Parkinson's Disease: Replication in three European cohorts/doi:10.1007%2Fs00259-019-04570-7/rivista:European journal of nuclear medicine and molecular imaging (Print)/anno:2020/pagina_da:437/pagina_a:450/intervallo_pagine:437–450/volume:47, European Journal of Nuclear Medicine and Molecular Imaging, 47(2), 437-450. SPRINGER, Addi. Archivo Digital para la Docencia y la Investigación, instname, European Journal of Nuclear Medicine and Molecular Imaging
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

Rationale In Parkinson’s disease (PD), spatial covariance analysis of 18F-FDG PET data has consistently revealed a characteristic PD-related brain pattern (PDRP). By quantifying PDRP expression on a scan-by-scan basis, this technique allows objective assessment of disease activity in individual subjects. We provide a further validation of the PDRP by applying spatial covariance analysis to PD cohorts from the Netherlands (NL), Italy (IT), and Spain (SP). Methods The PDRPNL was previously identified (17 controls, 19 PD) and its expression was determined in 19 healthy controls and 20 PD patients from the Netherlands. The PDRPIT was identified in 20 controls and 20 “de-novo” PD patients from an Italian cohort. A further 24 controls and 18 “de-novo” Italian patients were used for validation. The PDRPSP was identified in 19 controls and 19 PD patients from a Spanish cohort with late-stage PD. Thirty Spanish PD patients were used for validation. Patterns of the three centers were visually compared and then cross-validated. Furthermore, PDRP expression was determined in 8 patients with multiple system atrophy. Results A PDRP could be identified in each cohort. Each PDRP was characterized by relative hypermetabolism in the thalamus, putamen/pallidum, pons, cerebellum, and motor cortex. These changes co-varied with variable degrees of hypometabolism in posterior parietal, occipital, and frontal cortices. Frontal hypometabolism was less pronounced in “de-novo” PD subjects (Italian cohort). Occipital hypometabolism was more pronounced in late-stage PD subjects (Spanish cohort). PDRPIT, PDRPNL, and PDRPSP were significantly expressed in PD patients compared with controls in validation cohorts from the same center (P < 0.0001), and maintained significance on cross-validation (P < 0.005). PDRP expression was absent in MSA. Conclusion The PDRP is a reproducible disease characteristic across PD populations and scanning platforms globally. Further study is needed to identify the topography of specific PD subtypes, and to identify and correct for center-specific effects.

Details

ISSN :
16197089 and 16197070
Volume :
47
Database :
OpenAIRE
Journal :
European Journal of Nuclear Medicine and Molecular Imaging
Accession number :
edsair.doi.dedup.....a1eef3d5ca184bc97033d4de9aa2d7e8
Full Text :
https://doi.org/10.1007/s00259-019-04570-7