Back to Search
Start Over
Endogenously produced nonclassical vitamin D hydroxy-metabolites act as 'biased' agonists on VDR and inverse agonists on RORα and RORγ
- Source :
- The Journal of steroid biochemistry and molecular biology. 173
- Publication Year :
- 2016
-
Abstract
- The classical pathway of vitamin D activation follows the sequence D3→25(OH)D3→1,25(OH)2D3 with the final product acting on the receptor for vitamin D (VDR). An alternative pathway can be started by the action of CYP11A1 on the side chain of D3, primarily producing 20(OH)D3, 22(OH)D3, 20,23(OH)2D3, 20,22(OH)2D3 and 17,20,23(OH)3D3. Some of these metabolites are hydroxylated by CYP27B1 at C1α, by CYP24A1 at C24 and C25, and by CYP27A1 at C25 and C26. The products of these pathways are biologically active. In the epidermis and/or serum or adrenals we detected 20(OH)D3, 22(OH)D3, 20,22(OH)2D3, 20,23(OH)2D3, 17,20,23(OH)3D3, 1,20(OH)2D3, 1,20,23(OH)3D3, 1,20,22(OH)3D3, 20,24(OH)2D3, 1,20,24(OH)3D3, 20,25(OH)2D3, 1,20,25(OH)3D3, 20,26(OH)2D3 and 1,20,26(OH)3D3. 20(OH)D3 and 20,23(OH)2D3 are non-calcemic, while the addition of an OH at C1α confers some calcemic activity. Molecular modeling and functional assays show that the major products of the pathway can act as "biased" agonists for the VDR with high docking scores to the ligand binding domain (LBD), but lower than that of 1,25(OH)2D3. Importantly, cell based functional receptor studies and molecular modeling have identified the novel secosteroids as inverse agonists of both RORα and RORγ receptors. Specifically, they have high docking scores using crystal structures of RORα and RORγ LBDs. Furthermore, 20(OH)D3 and 20,23(OH)2D3 have been tested in a cell model that expresses a Tet-on RORα or RORγ vector and a RORE-LUC reporter (ROR-responsive element), and in a mammalian 2-hybrid model that test interactions between an LBD-interacting LXXLL-peptide and the LBD of RORα/γ. These assays demonstrated that the novel secosteroids have ROR-antagonist activities that were further confirmed by the inhibition of IL17 promoter activity in cells overexpressing RORα/γ. In conclusion, endogenously produced novel D3 hydroxy-derivatives can act both as "biased" agonists of the VDR and/or inverse agonists of RORα/γ. We suggest that the identification of large number of endogenously produced alternative hydroxy-metabolites of D3 that are biologically active, and of possible alternative receptors, may offer an explanation for the pleiotropic and diverse activities of vitamin D, previously assigned solely to 1,25(OH)2D3 and VDR.
- Subjects :
- 0301 basic medicine
Models, Molecular
Stereochemistry
Endocrinology, Diabetes and Metabolism
Clinical Biochemistry
Biology
Biochemistry
Calcitriol receptor
Article
03 medical and health sciences
Secosteroids
Classical complement pathway
0302 clinical medicine
Endocrinology
CYP24A1
Inverse agonist
Animals
Humans
Cholesterol Side-Chain Cleavage Enzyme
Receptor
Molecular Biology
Hydroxycholecalciferols
Biological activity
Nuclear Receptor Subfamily 1, Group F, Member 1
Cell Biology
Vitamins
Nuclear Receptor Subfamily 1, Group F, Member 3
030104 developmental biology
Docking (molecular)
030220 oncology & carcinogenesis
Molecular Medicine
Receptors, Calcitriol
Subjects
Details
- ISSN :
- 18791220
- Volume :
- 173
- Database :
- OpenAIRE
- Journal :
- The Journal of steroid biochemistry and molecular biology
- Accession number :
- edsair.doi.dedup.....a17f648003ca72124dd02959d15b6785