Back to Search
Start Over
High prevalence of multidrug resistance in bacterial uropathogens from Kathmandu, Nepal
- Source :
- BMC Research Notes, BMC Research Notes, Vol 5, Iss 1, p 38 (2012)
- Publication Year :
- 2012
- Publisher :
- BioMed Central, 2012.
-
Abstract
- Background Urinary Tract Infection (UTI) is one of the most common infectious diseases and people of all age-groups and geographical locations are affected. The impact of disease is even worst in low-resource developing countries due to unaware of the UTIs caused by multidrug-resistant (MDR) pathogens and the possibility of transfer of MDR traits between them. The present study aimed to determine the prevalence of MDR bacterial isolates from UTI patients, the antibiotic resistance pattern and the conjugational transfer of multidrug resistance phenotypes in Escherichia coli (E. coli). Results Two hundred and nineteen bacterial isolates were recovered from 710 urine samples at Kathmandu Model hospital during the study period. All samples and isolates were investigated by standard laboratory procedures. Among the significant bacterial growth (30.8%, 219 isolates), 41.1% isolates were MDR. The most prevailing organism, E. coli (81.3%, 178 isolates) was 38.2% MDR, whereas second most common organism, Citrobacter spp. (5%, 11 isolates) was found 72.7% MDR. Extended-spectrum β-lactamase (ESBL) production was detected in 55.2% of a subset of MDR E. coli isolates. Among the 29 MDR E. coli isolates, plasmids of size ranging 2-51 kb were obtained with different 15 profiles. The most common plasmid of size 32 kb was detected in all of the plasmid-harbored E. coli strains. The majority of E. coli isolates investigated for the multidrug resistance transfer were able to transfer plasmid-mediated MDR phenotypes along with ESBL pattern with a frequency ranging from 0.3 × 10-7 to 1.5 × 10-7 to an E. coli HB101 recipient strain by conjugation. Most of the donor and recipient strain showed high levels of minimum inhibitory concentration (MIC) values for commonly-used antibiotics. Conclusions The high prevalence of multidrug resistance in bacterial uropathogens was observed. Particularly, resistance patterns were alarmingly higher for amoxycillin, co-trimoxazole, flouroquinolones and third-generation cephalosporins, which necessitate the re-evaluation of first and second line therapies for UTI. In addition, conjugational co-transfer of MDR phenotypes with ESBL-positive phenotypes was observed in MDR E. coli.
- Subjects :
- medicine.drug_class
Cephalosporin
Antibiotics
lcsh:Medicine
Biology
Multidrug resistance
medicine.disease_cause
Plasmid
General Biochemistry, Genetics and Molecular Biology
Microbiology
Minimum inhibitory concentration
Antibiotic resistance
medicine
lcsh:Science (General)
Escherichia coli
lcsh:QH301-705.5
Medicine(all)
Citrobacter
Urinary tract infection
Biochemistry, Genetics and Molecular Biology(all)
lcsh:R
General Medicine
biology.organism_classification
Multiple drug resistance
lcsh:Biology (General)
lcsh:Q1-390
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 17560500
- Volume :
- 5
- Database :
- OpenAIRE
- Journal :
- BMC Research Notes
- Accession number :
- edsair.doi.dedup.....a1779fa813815415c441d2a25fc8e284