Back to Search Start Over

Study of a silicon telescope for solid state microdosimetry: Preliminary measurements at the therapeutic proton beam line of CATANA

Authors :
G.A.P. Cirrone
Stefano Agosteo
D. Moro
Andrea Pola
Alberto Fazzi
G. D'Angelo
P. Colautti
V. Varoli
Giacomo Cuttone
M.V. Introini
Source :
Radiation Measurements. 45:1284-1289
Publication Year :
2010
Publisher :
Elsevier BV, 2010.

Abstract

A monolithic silicon device consisting of a matrix of micrometric cylindrical diodes (about 2 μm in thickness and 9 μm in diameter) coupled to a residual energy measurement stage E (about 500 μm in thickness) was proposed and studied for assessing the quality of a therapeutic proton beam. The device was placed at different depths inside a polymethyl-methacrylate phantom and irradiated with a modulated 62 MeV proton beam at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of the Laboratori Nazionali del Sud (LNS, Catania, Italy) of the Istituto Nazionale di Fisica Nucleare (INFN). At each phantom depth, the energy imparted in the two detector stages was measured event-by-event in coincidence mode. The distributions of the energy imparted to the cylindrical diodes were corrected for tissue-equivalence by applying an optimized procedure. In order to perform a comparison with literature data measured with a cylindrical TEPC, the distributions derived with the silicon detector were corrected for shape-equivalence. The agreement with the microdosimetric spectra measured with the TEPC was satisfactory above the detection limit imposed by the electronic noise of the silicon-based system.

Details

ISSN :
13504487
Volume :
45
Database :
OpenAIRE
Journal :
Radiation Measurements
Accession number :
edsair.doi.dedup.....a16eed9af17b23c739f6cf5138100070
Full Text :
https://doi.org/10.1016/j.radmeas.2010.06.051