Back to Search Start Over

Enzyme-Dependent Ascorbate Recycling in Human Erythrocytes: Role of Thioredoxin Reductase

Authors :
James M. May
Zhi-chao Qu
Shalu Mendiratta
Source :
Free Radical Biology and Medicine. 25:221-228
Publication Year :
1998
Publisher :
Elsevier BV, 1998.

Abstract

Human erythrocytes efficiently reduce dehydroascorbic acid (DHA) to ascorbate, which helps to maintain the ascorbate content of blood. Whereas erythrocyte DHA reduction is thought to occur primarily through a direct chemical reaction with GSH, this work addresses the role of enzyme-mediated DHA reduction by these cells. The ability of intact erythrocytes to recycle DHA to ascorbate, estimated as DHA-dependent ferricyanide reduction, was decreased in parallel with GSH depletion by glutathione-S-transferase substrates. In contrast, the sulfhydryl reagent phenylarsine oxide inhibited DHA reduction to a much greater extent than it decreased GSH in intact cells. DHA reduction in excess of that due to a direct chemical reaction with GSH was also observed in freshly prepared hemolysates. Hemolysates likewise showed NADPH-dependent reduction of DHA that appeared due to thioredoxin reductase, because this activity was inhibited 68% by 10 microM aurothioglucose, doubled by 5 microM E. coli thioredoxin, and had an apparent Km for DHA (1.5 mM) similar to that of purified thioredoxin reductase. Additionally, aurothioglucose-sensitive, NADPH-dependent DHA reductase activity was decreased 80% in hemolysates prepared from phenylarsine oxide-treated cells. GSH-dependent DHA reduction in hemolysates was more than 10-fold that of NADPH-dependent reduction. Nonetheless, the ability of phenylarsine oxide to decrease DHA reduction in intact cells with little effect on GSH suggests that enzymes, such as thioredoxin reductase, may contribute more to this activity than previously considered.

Details

ISSN :
08915849
Volume :
25
Database :
OpenAIRE
Journal :
Free Radical Biology and Medicine
Accession number :
edsair.doi.dedup.....a15e977b68ec908b36745fccdc0e42e6
Full Text :
https://doi.org/10.1016/s0891-5849(98)00060-4