Back to Search Start Over

Probing Hot Gas Components of Circumgalactic Medium in Cosmological Simulations with the Thermal Sunyaev-Zel'dovich Effect

Authors :
Junhan Kim
Sunil Golwala
James G. Bartlett
Stefania Amodeo
Nicholas Battaglia
Andrew J. Benson
J. Colin Hill
Philip F. Hopkins
Cameron B. Hummels
Emily Moser
Matthew E. Orr
AstroParticule et Cosmologie (APC (UMR_7164))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Observatoire astronomique de Strasbourg (ObAS)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Astrophys.J., Astrophys.J., 2022, 926 (2), pp.179. ⟨10.3847/1538-4357/ac4750⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

The thermal Sunyaev-Zel'dovich (tSZ) effect is a powerful tool with the potential for constraining directly the properties of the hot gas that dominates dark matter halos because it measures pressure and thus thermal energy density. Studying this hot component of the circumgalactic medium (CGM) is important because it is strongly impacted by star-formation and active galactic nuclei (AGN) activity in galaxies, participating in the feedback loop that regulates star and black hole mass growth in galaxies. We study the tSZ effect across a wide halo mass range using three cosmological hydrodynamical simulations: Illustris-TNG, EAGLE, and FIRE-2. Specifically, we present the scaling relation between tSZ signal and halo mass and radial profiles of gas density, temperature, and pressure for all three simulations. The analysis includes comparisons to Planck tSZ observations and to the thermal pressure profile inferred from the Atacama Cosmology Telescope (ACT) measurements. We compare these tSZ data to the simulations to interpret the measurements in terms of feedback and accretion processes in the CGM. We also identify as-yet unobserved potential signatures of these processes that may be visible in future measurements, which will have the capability of measuring tSZ signals to even lower masses. We also perform internal comparisons between runs with different physical assumptions. We conclude: (1) there is strong evidence for the impact of feedback at $R_{500}$ but that this impact decreases by $5R_{500}$, and (2) the thermodynamic profiles of the CGM are highly dependent on the implemented model, such as cosmic-ray or AGN feedback prescriptions.<br />21 pages, 10 figures, submitted to ApJ, comments welcome

Details

Language :
English
Database :
OpenAIRE
Journal :
Astrophys.J., Astrophys.J., 2022, 926 (2), pp.179. ⟨10.3847/1538-4357/ac4750⟩
Accession number :
edsair.doi.dedup.....a15a60d95dab2c009c7dc43ff362b83c