Back to Search
Start Over
Epistasis between deleterious mutations and the evolution of recombination
- Source :
- Trends in ecologyevolution. 22(6)
- Publication Year :
- 2006
-
Abstract
- Epistasis and the evolution of recombination are closely intertwined: epistasis generates linkage disequilibria (i.e. statistical associations between alleles), whereas recombination breaks them up. The mutational deterministic hypothesis (MDH) states that high recombination rates are maintained because the breaking up of linkage disequilibria generated by negative epistasis enables more efficient purging of deleterious mutations. However, recent theoretical and experimental work challenges the MDH. Experimental evidence suggests that negative epistasis, required by the MDH, is relatively uncommon. On the theoretical side, population genetic models suggest that, compared with the combined effects of drift and selection, epistasis generates a negligible amount of linkage disequilibria. Here, we assess these criticisms and discuss to what extent they invalidate the MDH as an explanation for the evolution of recombination.
- Subjects :
- Linkage (software)
Genetics
Recombination, Genetic
education.field_of_study
Models, Genetic
Population
Mutation, Missense
Population genetics
Epistasis, Genetic
Biology
Biological Evolution
Evolutionary biology
Genetic model
Mutation (genetic algorithm)
Epistasis
Allele
education
Ecology, Evolution, Behavior and Systematics
Recombination
Subjects
Details
- ISSN :
- 01695347
- Volume :
- 22
- Issue :
- 6
- Database :
- OpenAIRE
- Journal :
- Trends in ecologyevolution
- Accession number :
- edsair.doi.dedup.....a10fa12ca8f2f8bf61d0d1386e956eb0