Back to Search Start Over

Bannai–Ito algebras and the universal R-matrix of osp(1|2)

Authors :
Crampe, Nicolas
Vinet, Luc
Zaimi, Meri
Institut Denis Poisson (IDP)
Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO)
Laboratoire Charles Coulomb (L2C)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Centre de Recherches Mathématiques [Montréal] (CRM)
Université de Montréal (UdeM)
The research of L. Vinet is supported in part by a Discovery Grant from the Natural Science and Engineering Research Council (NSERC) of Canada.
M. Zaimi holds a NSERC graduate scholarship.
Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO)
Source :
Letters in Mathematical Physics, Letters in Mathematical Physics, Springer Verlag, 2020, 110 (5), pp.1043-1055. ⟨10.1007/s11005-019-01249-w⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

The Bannai-Ito algebra $BI(n)$ is viewed as the centralizer of the action of $\mathfrak{osp}(1|2)$ in the $n$-fold tensor product of the universal algebra of this Lie superalgebra. The generators of this centralizer are constructed with the help of the universal $R$-matrix of $\mathfrak{osp}(1|2)$. The specific structure of the $\mathfrak{osp}(1|2)$ embeddings to which the centralizing elements are attached as Casimir elements is explained. With the generators defined, the structure relations of $BI(n)$ are derived from those of $BI(3)$ by repeated action of the coproduct and using properties of the $R$-matrix and of the generators of the symmetric group $\mathfrak S_n$.

Details

Language :
English
ISSN :
03779017 and 15730530
Database :
OpenAIRE
Journal :
Letters in Mathematical Physics, Letters in Mathematical Physics, Springer Verlag, 2020, 110 (5), pp.1043-1055. ⟨10.1007/s11005-019-01249-w⟩
Accession number :
edsair.doi.dedup.....a0fe7ed717b0bce3dadb62fa983bdb52